Система радиопередачи временных интервалов

 

Изобретение относится к радиосистемам, в которых разделенные во времени моноколебания создаются из импульсов постоянного тока и передаются в пространство, в котором суммарные всплески энергии рассеяны в термах частоты, где спектральная плотность сливается с шумом окружающей среды, и информация, относящаяся к этим всплескам, является восстанавливаемой. Технический результат - повышение эффективности приема информационного сигнала. В передатчике генератор генерирует сигнал базовой частоты в 100 кГц для подачи на делитель. Делитель делит базовую частоту на четыре. Сигнал частотой 25 кГц с выхода делителя подают на вход регулируемого источника питания и на выходной каскад передатчика для передачи. Импульсная антенна создает моноколебание. Система восстанавливает сигналы, в противном случае поглощаемые шумом. 5 з. п. ф-лы, 19 ил.

Изобретение относится к радиосистемам, в которых разделенные во времени, по существу, моноколебания создаются из импульсов постоянного тока и передаются в пространство, в котором суммарные всплески энергии рассеяны в термах частоты, где спектральная плотность, по существу, сливается с шумом окружающей среды, и, кроме того, информация, относящаяся к этим всплескам, является восстанавливаемой.

Ранее широко применялось при радиопередаче частотное разделение каналов. Так, сосуществующие регулярные радиопередачи допустимы посредством назначения различных частот или частотных каналов различным пользователям, в частности, внутри одного и того же географического района. По существу, чуждыми этой концепции являются устойчивые передачи, которые не являются частотно ограниченными. Несмотря на то, что, как представляется, каждый прибор с неограниченным частотным откликом будет вносить нестабильность в существующие назначенные службы частот, было заранее принято, что это не является обязательно верным и что по меньшей мере теоретически возможно иметь перекрывающее использование радиоспектра. Согласно одному из предлагаемых способов создаваемые очень короткие, порядка одной наносекунды или менее, радиоимпульсы подают на широкополосную антенну, которая в идеале должна откликаться передачей коротких всплесковых сигналов, в типичном случае содержащих от трех до четырех лепестков полярности, которые имеют в энергетическом смысле энергию выше, по существу, выше верхней части (около 100 мегациклов) наиболее часто используемого радиочастотного спектра, то есть до средне-гегагерцевого диапазона. Основная дискуссия по импульсной эффективности радиопередачи содержится в статье, озаглавленной "Электромагнетизм временной области и его применение", труды IEEE, т. 66, N 3, март 1978 г. В этой статье, в частности, предлагается использовать такую технологию для видеоимпульсной РЛС, а также предложены диапазоны от 5 до 5000 футов. Как отмечалось, эта статья появилась в 1978 году, и теперь, 12 лет спустя, можно отметить невысокий прогресс на пути коммерческого использования этой технологии.

Из теоретического и экспериментального исследования известного уровня техники заявитель уяснил, что это во многом связано с несколькими факторами. Один из них заключается в том, что экстремально широкая полоса передаваемых частот предъявляет весьма существенные требования к антенне. Антенны в общем конструируются для ограниченных по ширине полос частот, и традиционно, когда производят какое-либо существенное изменение в частоте, становится необходимым выбор другой антенны или других размеров. Это не означает, что антенны с такой шириной полосы частот вообще не существуют, однако заявитель рассмотрел много типов, включая биконические, рупорные и логопериодические, и определил, что не существует практичных антенн, которые допускают импульсное радио или радиолокационное применение вне лаборатории.

Следующая проблема, которая волнует сторонников применения технологии импульсных или временных интервалов для радио, заключается в эффективности приема и обнаружения присутствия широкого спектра, который создает одиночный всплеск, в частности, в присутствии высоких уровней существующего излучения окружающей среды, присутствующего почти везде. В идеале требуемая антенна должна, по существу, равномерно воспроизводить передаваемый спектр, а приемник, на который она работает, должен иметь специальные свойства, которые позволяют использовать их, несмотря на обычно высокий уровень шумов, которые она должна преодолевать. Известный уровень техники в данной области включает в себя использование обнаружения грубых сил, а также обнаружения селекции порога или временного порога. Пороговое детектирование просто обеспечивает пропускание сигналов, превышающих выбранный пороговый уровень. Очевидно, что при таком подходе проблема заключается в том, что, если передаются импульсные генерируемые сигналы с амплитудой, достаточной для превышения уровней сигналов окружающей среды, существующие радиослужбы, которые вырабатывают последние, могут иметь нежелательные взаимодействия с ними. По некоторым причинам, возможно из-за смещения, производимого широким спектром используемых сигналов, например от 50 МГц до приблизительно 5 ГГц, возможность когерентного детектирования представлялась невозможной.

Известна система радиопередачи временных интервалов по патенту США N 4743906, кл. G 01 S 13/04, опубл. 10.05.86. Схемное решение указанной системы во многом повторяет заявленную систему. Однако система по патенту США N 4743906 с ее антенными элементами приспособлена для работы с традиционными радиосигналами и неприменима для работы с сигналами с исключительно широкой полосой частот.

Соответственно в основу настоящего изобретения поставлена задача создания системы передачи импульсных или временных (или видеоимпульсных) интервалов, которая решает все вышеуказанные проблемы, и создания завершенной системы передачи импульсных временных интервалов, которая с точки зрения заявителя позволяет устранить все практические сложности на пути к ее применению и, что важно, используется для всех наиболее распространенных электромагнитных режимов радиопередачи, включая связь, телеметрию, навигацию и радиолокацию.

В настоящем изобретении разработана импульсно-чувствительная антенна, которая преобразует приложенный импульс постоянного тока в, по существу, моноколебание. Это диполь, являющийся совершенной противоположностью обычной антенны в виде симметричного вибратора с треугольными плечами, причем два треугольных элемента диполя размещены своими основаниями рядом друг с другом и управляются в почти смежных точках оснований, разделяемых пополам линией между вершинами двух треугольных элементов. Эта разделяющая линия может отмечать боковой размер или высоту двух треугольных элементов.

Кроме того, в известных системах мощностные ограничения составляют несколько сотен вольт сигнала, прикладываемого к передающей антенне. Там, где это является проблемой, она может быть преодолена переключателем передатчика, который образован нормально изолированной кристаллической структурой, такой, как алмазный материал, проложенный между двумя металлическими электродами, которые затем плотно соединены с элементами антенны. Этот материал переключают в проводящее или менее резистивное состояние посредством возбуждения его лучом света с надлежащей длиной волны, ультрафиолетового в случае алмаза. При этом способе в антенну не прокладывается линия переключающих металлических соединений, которая могла бы в противном случае улавливать излучение и повторно излучать его, искажая сигнал, подводимый к антенне и взаимодействуя с сигналом, излучаемым с нее, в обоих случаях стремясь удлинить длину сигнального всплеска, очевидно вредный эффект.

По отношению к радиоприемнику обычно используется принимающая антенна, схожая с антенной, используемой для передачи, как описано выше. Во-вторых, координатно синхронизированный с передаваемым сигналом сигнал либо детектируется из принятого сигнала, как в системах связи или телеметрии, или принимается непосредственно от передатчика, как например, в случае радиолокации. Затем указанный синхронизированный сигнал, обычно половина энергетического цикла смешивается или перемножается с принятым сигналом, чтобы определить модуляцию или положение цели выбранного диапазона в каждом конкретном случае.

Кроме того, передаваемые радиолокационные сигналы можно изменять во временной структуре (вдобавок к структуре модуляции для коммуникаций или телеметрии). Это значительно увеличивает безопасность системы и дифференцирует сигналы от родственных, если не от всех сигналов окружающей среды, то есть сигналов окружающей среды, которые не синхронизированы с передаваемыми радиолокационными (состоящими из разрывных последовательностей) сигналами, при этом эффект легко достигаем. Это также обеспечивает использование более быстрых уровней повторения для радиолокатора, который в отсутствие такого изменения или "подмешивания" импульсов будет создавать неопределенности дистанции, например, между отраженными сигналами от последовательной передачи и, следовательно, дистанциями. Радиолокационные сигналы являются сигналами, генерируемыми, когда ступенчатое изменение напряжения подают на антенну с импульсным откликом, как иллюстрируется ниже.

Еще одной особенностью изобретения является то, что частота повторения радиолокационных сигналов может быть достаточно большой, например до 100 МГц или выше, это обеспечивает очень широкую частотную дисперсию и, следовательно, для данного общего энергетического уровня энергия на любой одной частоте должна быть экстремально малой, таким образом эффективно решая проблему взаимодействия с существующими службами, базирующимися на радиочастотах.

Еще одной особенностью изобретения является то, что движущиеся цели обнаруживаются в термах их скорости посредством применения полосового фильтра, сопровождаемого смешиванием и двойным интегрированием сигналов. Еще одной особенностью изобретения является то, что при эксплуатации в последнем режиме идеально работают два канала приема, в которых поступающий сигнал умножается синхронизированным или локально генерируемым сигналом выбранного диапазона в одном канале, а также смешивание того же поступающего сигнала с задержанным локально генерируемым сигналом в другом канале, причем задержка находится в диапазоне от одной четвертой до одной второй периода одного колебания. Это дает дифференциацию целей без использования раздельных последовательностей передач.

Еще одной особенностью изобретения является то, что множественные излучатели или приемники будут работать в матрице, где их суммарное действие будет или изменяться во время воспринимаемого (или передаваемого) выходного сигнала с соответствующим акцентом на траектории, нормальной к поверхности антенны, или создавать направленную компенсацию траектории к нормальной траектории, выполняемой задержанными траекториями выбранных сигналов.

Особенностью изобретения является также то, что элементы радиоантенны должны быть расположены перед отражателем, где дистанция между элементами и отражателем с точки зрения времени передачи от элемента или элементов к отражателю и в обратном направлении к элементу/ам/ находится в типичном случае в пределах около трех дюймов с размерами элементов от вершины до вершины приблизительно девять дюймов.

Фиг. 1 изображает объединенную структурную схему системы временных интервалов.

Фиг. 1a - схему дополнительного варианта выходной ступени для передатчика, показанного на фиг. 1.

Фиг. 2 - блок-схему приемника временных интервалов согласно настоящему изобретению.

Фиг. 3 - набор форм электрических сигналов, иллюстрирующих аспекты схемы, показанной на фиг. 1 и 1a.

Фиг. 4 - набор форм электрических сигналов, иллюстрирующих аспекты работы схемы, показанной на фиг. 2.

Фиг. 5 - электрическую блок-схему, иллюстрирующую базовую радиолокационную систему, сконструированную в соответствии с настоящим изобретением.

Фиг. 6 и 7 иллюстрируют конфигурацию антенны в соответствии с изобретением.

Фиг. 6а - дополнительную форму антенны, сконструированной в соответствии с изобретением.

Фиг. 8 и 9 схематический показывают антенную матрицу.

Фиг. 9а, b показывает дополнительную антенную матрицу.

Фиг. 10 - 15 иллюстрируют различные переключающие сборки, которые используются при загрузке и разгрузке антенн, чтобы воздействовать на передачу сигналов.

Фиг. 16 иллюстрирует радиолокационную систему, в частности, для использования в надзоре за оборудованием, а фиг. 17 иллюстрирует модификацию этой радиолокационной системы.

Фиг. 18 и 19 иллюстрируют общее устройство передающей и приемной антенн для трехмерного положения целей.

Обратимся к фиг. 2 и в начале к передатчику 10, базовая частота 100 КГц генерируется генератором 12, в типичном случае генератором с кварцевой стабилизацией частоты. На его выход импульсный сигнал подается на делитель на 4 (14) для обеспечения на его выходе 25 КГц, 0 - 5 вольтового импульсного сигнала, показанного в форме сигнала A фиг. 3. Далее алфавитные ссылки на формы сигналов будут просто идентифицировать их по буквенной идентичности без ссылки на чертеж, в частности на фиг. 3. Выходной сигнал в 25 КГц используется в качестве общего сигнала передачи и в качестве входа в источник 16 питания. Последний является регулируемым источником, который подает 300 вольт постоянного тока в качестве смещения на невзаимодействующие базовые области для выходной ступени 18 передатчика 10, который также работает при передаче ключом на уровне 25 КГц.

Выходной сигнал с делителя на четыре 14 используется в качестве базы сигнала и в качестве такового подается через конденсатор 20 на фазоимпульсный модулятор 22. Фазоимпульсный модулятор 22 включает в себя на входе RC-схему, состоящую из резистора 24 и конденсатора 26, которая преобразует вход в виде меандра в приблизительно треугольную волну, как показано на форме сигнала B, которая подается через резистор 25 на неинвертирующий вход сравнивающего устройства 28. Выбранное или опорное положительное напряжение, отфильтрованное конденсатором 27, также подается на неинвертирующий вход компаратора 28, запитываемого от +5 вольтовой клеммы 29 источника 30 смещения постоянного тока через резистор 32. Соответственно, например, в действительности на неинвертирующем входе должна появиться треугольная волна, смещенная положительно вверх, как иллюстрируется формой сигнала С.

Действительный уровень проводимости компаратора 28 определяется входным сигналом, прикладываемым через конденсатор 36 и резистор 37 к инвертирующему входу компаратора 28, на который подано смещение от источника 30 через резистор 38 и резистор 32. Смещение входа объединенного сигнала иллюстрируется на форме сигнала 1. Входным сигналом может быть просто аудио-выходной сигнал микрофона 34, усиленный, если необходимо, усилителем 35. Дополнительно, при замкнутом выключателе 39, это может быть сумма аудио-выхода и смещения сигнала или вибрации напряжения, например, создаваемого выходом сигнального генератора 33, причем сигналы суммируются на резисторе 41. Сигнальный генератор 33 может, например, создавать синусоидальный, двоичный или другие сигналы, и, как иллюстрация, он отмаркирован как создающий "двоичный сигнал A". Таким образом, генератор 33 должен создавать напряжение двоичного сигнала как последовательность дискретных импульсов напряжения, изменяющегося между нулем и некоторым дискретным напряжением, который может представлять символы или числовые значения, или просто произвольное значение. Посредством такой рассмотренной входной комбинации выходной сигнал компаратора 28 должен подняться до уровня положительного насыщения, когда сигнал 40 треугольной формы (форма сигнала E) будет иметь значение, большее чем сигнал эффективной модуляции 42, и падать до уровня отрицательного насыщения, когда сигнал 42 модуляции будет иметь значение больше, чем сигнал 40 треугольной формы. Выходной сигнал компаратора 28 показан на форме сигнала F, и результатом является изменение, включение и выключение импульсов, показанных на этой форме сигнала, как функция комбинации информационного сигнала и сигнала "дрожания", где он применяется. Таким образом, получается модуляция позиции импульса от амплитудного сигнала. Подмешиваемый псевдослучайный сигнал (dither) обеспечивает добавочный дискретный образец временных позиций, которые должны быть включены в передаваемый сигнал, таким образом, при требовании приема и демодуляции его ППС будет точно воспроизведен.

По отношению к выходному сигналу компаратора 28 мы заинтересованы в использовании отрицательного опережающего или запаздывающего его фронта 44, и необходимо заметить, что этот запаздывающий фронт будет изменять свою временную позицию как функция модуляции сигнала. Этот запаздывающий фронт формы сигнала на форме сигнала F запускает "включено" моно или ждущий мультивибратор 46, имеющий время "включено" приблизительно 50 наносекунд, а его выход показан на форме сигнала G. Для целей иллюстрации, в то время как соответствующих форм сигналов ориентированы надлежащим образом, длительности импульсов и паузы (как показано штриховыми линиями, паузы составляют 40 микросекунд) не согласованы по масштабу. Таким образом, опережающий край (фронт) импульсной формы сигнала G соответствует по времени запаздывающему краю (фронту) 44 (форма сигнала F), и его временная позиция внутри среднего времени между импульсами формы сигнала изменяется как функция сигнала входной модуляции на компаратор 28.

Выходной сигнал одновибратора 46 подают через диод 48 с резистора 50 на базовый вход N PN-транзистора 52, работающего как усилитель переключения. Он обычно смещен через резистор 54, например, 1,5 кОм от +5 вольтовой клеммы 29 5-вольтового источника питания 30 к коллектору. Конденсатор 56, имеющий приблизительную емкость в 0,1 мФ, подключен между коллектором и землей транзистора 52 для обеспечения полного потенциала смещения на транзисторе в течение короткого интервала включения, 50 наносекунд. Выход транзистора 52 подключен между его эмиттером и землей к первичной обмотке 58 запускающего трансформатора 60. Дополнительно, транзистор 52 может управлять трансформатором 60 через лавинный транзистор, соединенный в общую эмиттерную конфигурацию через коллекторный нагрузочный резистор. Чтобы управлять трансформатором 60 крутым фронтом волны, транзистор, работающий в лавинном режиме, является идеальным. Идентичные вторичные обмотки 62 и 64 триггерного трансформатора 60 отдельно запитывают базово-эмиттерные входы N PN лавинных или работающих в лавинном режиме транзисторов 66 и 68 мощного выходного каскада 18. Хотя показано два, при соответствующем подключении можно использовать один или больше, чем два.

Что касается лавинного режима работы транзисторов 66 и 68, было обнаружено, что такой режим возможен для нескольких типов транзисторов, обозначенных не иначе, как предусмотрено, например, 2N2222, в частности транзисторов в металлическом корпусе. Лавинный режим иногда рассматривается как второй режим пробоя, и когда транзисторы работают в этом режиме и переключаются на "включено", их сопротивление быстро снижается (внутри почти со скоростью света), и они остаются в этом состоянии до тех пор, пока коллекторный ток не упадет достаточно, чтобы прекратить проводимость (при нескольких микроамперах). Определенные другие транзисторы, такие как типа 2N4401, также демонстрируют надежные лавинные характеристики.

Как иллюстрировалось, импульсная антенна загружается от источника 65 постоянного тока через резисторы 67 и 69 до общего напряжения, которое является суммой лавинного напряжения транзисторов 66 и 68, как обсуждалось выше. Резисторы 67 и 69 вместе имеют сопротивление, значение которого позволяет транзисторам 66 и 68 быть смещенными, как описано выше. Резисторы 71 и 73 имеют относительно низкое значение и регулируются для приема энергии ниже частоты отсечки антенны. В работе, когда импульс подан на первичную обмотку 58 импульсного трансформатора 60, транзисторы 66 и 68 включаются, эффективно закорачивая через резисторы 71 и 73 антенные элементы 204 и 206. Это действие происходит чрезвычайно быстро с тем результатом, что генерируется сигнал, в общем, как показано на форме сигнала G импульса (но несколько округленной). Антенна 200 дифференцирует импульс G, чтобы передать, по существу, моноколебание основной формы, показанной на форме сигнала H.

На фиг. 1 иллюстрируется дополнительный вариант осуществления выходного каскада передатчика. Он значительно отличается от показанного на фиг. 1а тем, что использует чувствительный к свету лавинный транзистор 63, например 2N3033. Подобные компоненты обозначают похожими числовыми обозначениями на те, что показаны на фиг. 1, но с добавлением суффикса "a". Транзистор 63 переключается лазерным диодом или быстрым LED (светодиодом) 61, в свою очередь управляемым транзистором 52, в общем работающим, как показано на фиг. 1. При использовании активизируемых светом лавинных или других работающих в лавинном режиме полупроводниковых переключателей (уже существующих или которые скоро появятся), или группы их, соединенных в последовательность, оказалось, что напряжение для источника 65 питания может подняться до многокиловольтного диапазона, таким образом обеспечивая, по существу, выход питания такой высокий, как желательно. В этом отношении, и как особая черта этого изобретения, мог бы применяться работающий в лавинном режиме, переключаемый светом арсенид галлия.

Обратимся снова к фиг. 1, выходное моноколебание, создаваемое антенной 200 с элементами 204 и 206, обычно передается через дискретное пространство и обычно должен приниматься подобной широкополосной антенной, например антенной 200 приемника во втором положении (фиг. 2).

Фиг. 2 иллюстрирует радиоприемник, который, в частности, приспособлен для приема и детектирования передаваемых сигналов временных интервалов. Вдобавок она, в частности, иллюстрирует систему для детектирования информации, которая смешана с особым сигналом смещения или псевдослучайным подмешиваемым сигналом, аналоговым или цифровым таким, как формируемый генератором 33 двоичной последовательности "A", показанным на фиг. 1. Таким образом, для целей описания предполагается, что выключатель 39 (фиг. 1) замкнут, и что сигнал, передаваемый передатчиком 10, является сигналом, в котором информационные сигналы от микрофона 34 суммируются с выходом генератора 33 двоичной последовательности "A", и, таким образом, что импульсный позиционный выход передатчика 10 является выходом, в котором позиция импульса является функцией информационного и смещения или дрожания сигналов. Так, передаваемый сигнал можно описать как сигнал с модулируемой импульсной позицией, позиция которого подвергается под воздействием образца двоичной последовательности "A".

Сигнал, передаваемый от передатчика 10, принимается антенной 200 (фиг. 2), и этот сигнал подается на две базовые схемы, схему 222 демодуляции и эталонный генератор 234. В соответствии с этой системой копия передаваемого сигнала, форма сигнала H (фиг. 4), используется для эффективного детектирования принимаемого сигнала, основное детектирование выполняется в умножителе или умножающем смесителе 226. Для максимального отклика эталонный сигнал, воспроизведенный в виде формы сигнала T1 на фиг. 4, должен быть подан на смеситель 226 близко по фазе со входом, как будет описано дальше. Он будет отличаться величиной, не ощутимой в формах сигнала фиг. 6, как функция модулирования, создавая размахи колебаний приблизительно 200 пикосекунд, обычно для 1 наносекундного импульса. Чтобы выполнить такую почти синхронизацию, эталонный генератор 234 использует генератор 227 с кварцевой стабилизацией, но управляемый напряжением, который управляется напряжением, которое синхронизировано в работе в смысле принятого сигнала.

Генератор 227 работает на частоте, которая, по существу, выше, чем частота повторения передатчика 10, и здесь делится до рабочей частоты 25 КГц делителем 230 частоты, что равно выходу делителя 14 передатчика 10.

Чтобы ввести эталон псевдослучайного подмешиваемого сигнала, соответствующего тому, что создается генератором 33 двоичной последовательности "A", подобный генератор 228 подает двоичное изменяемое напряжение на схему 232 программируемой задержки, которая подает на сигнальный выход делителя 230 задержанный эталон, соответствующий эталону, создаваемому генератором 33 двоичной последовательности фиг. 1, при добавлении к модулированию информации. Таким образом, например, это могут быть четыре 8-битовых двоичных слова, означающих цифры 4, 2, 6 и 8, такой же эталон, созданный генератором 33 двоичной последовательности "A" и передаваемый передатчиком 10. Кроме того, предположим, что это повторяющийся двоичный эталон. Так, программируемая задержка 232 будет сначала задерживать импульс, принимаемый ею от делителя 230 четырьмя единицами. Аналогичная операция должна быть произведена для цифры 2 и так далее, пока четыре цифровые последовательности не будут сформированы. Затем последовательность начинается снова. Чтобы два генератора двоичных последовательностей работали синхронно, либо время старта последовательности должно быть сообщено приемнику, либо должно быть дополнительно произведено квантование сигнала для достаточного числа сигнальных входных импульсов, чтобы установить синхронизацию посредством работы системы синхронизации, как будет описано. Когда предполагается повторяющаяся последовательность, нет необходимости, чтобы она была такой длительности, как имеющаяся синхронизация между двумя генераторами, например, при передаче стартового сигнала последовательности и вводе в приемник средств для детектирования и использования его.

Либо программируемая задержка 232, либо второе устройство задержки, подключенное к ее выходу, будет дополнительно обеспечивать основную схемную задержку в целях учета схемных задержек, присущих соответствующим схемам, с которыми идет работа, как будет описано. В любом случае задержанный выходной сигнал задержки 232, который является их композицией, будет подан на вход эталонного генератора 234, и он приспособлен для генерирования копии передаваемого сигнала, иллюстрируемого на фиг. 4 в виде формы сигнала T1. Дифференциальный усилитель 246 в основном выполняет функцию создания напряжения постоянного тока, которое необходимо для подачи сигнала коррекции или ошибки на генератор 227, чтобы обеспечить в смесителе 226 сигнал T1 - копию точно в фазе со средним временем входного сигнала EA.

Чтобы генерировать ближайший сигнал, входной сигнал EA размножается на две разделенных во времени копии эталонного сигнального выхода эталонного генератора 234. Первая из них, обозначенная как T1, умножается в смесителе 236 на входной сигнал EA, и второй эталонный сигнал T2 умножается на входной сигнал EA в смесителе 238. Как будет отмечено на фиг. 6, T2 задержан относительно сигнала T1 задержкой 240 на период, по существу, равный одной второй длительности главного дифракционного максимума P эталонного сигнала T1.

Выходной сигнал смесителя 236 интегрируется в интеграторе 242, и его выход дискретизируется и сохраняется устройством 244 дискретизации и хранения при переключении задержкой 232. Выходной сигнал с устройства 244 дискретизации и хранения, интеграл произведения входного сигнала EA и 1T1, подается на неинвертирующий вход дифференциального усилителя 246. Подобным образом выходной сигнал смесителя 238 интегрируется интегратором 248 и дискретизируется и сохраняется устройством 250 дискретизации и запоминания отсчетов при переключении задержкой 232, и интегрированное произведение входного сигнала EA и эталонного сигнала T2 подается на инвертирующий вход дифференциального усилителя 246.

При анализе работы дифференциального усилителя 246 необходимо заметить, что если фаза выхода генератора 22 будет опережать сигналы T1 и E, поданные на смеситель 236, то они станут ближе по фазе, и их произведение увеличится, вызывая увеличение входного сигнала на неинвертирующий вход дифференциального усилителя 246, благодаря чему эффект опережения эталонного сигнала T2 относительно входного сигнала E будет таким, что их совпадение будет уменьшаться, вызывая уменьшение в выходном сигнале произведения смесителя 238 и, следовательно, уменьшение входного напряжения на инвертирующий вход дифференциального усилителя 246. В результате выход дифференциального усилителя 246 будет смещаться в положительном направлении, и этот полярный сигнал будет такой, чтобы заставить генератор 227 задержаться. Если изменения происходят в противоположном направлении, результат будет таков, что более высокое напряжение будет подано на инвертирующий вход, чем на неинвертирующий вход дифференциального усилителя 246, заставляя выходной сигнал уменьшаться и уводить генератор 227 в противоположном направлении. Таким способом ближайший захват средней фазы происходит между входным сигналом EA и эталонным сигналом TA, который непосредственно используется в модулировании входного сигнала. Термин "ближайший" понимается так, что выход дифференциального усилителя 246 проходит через фильтр нижних частот перед тем, как быть поданным на управляющий вход генератора 227. Частота отсечки фильтра 253 нижних частот устанавливается такой, что требуется довольно большое число импульсов, чтобы вызвать фазовый сдвиг (например, 10 вплоть, возможно, до 0,001 Гц). В результате отклик генератора 227 таков, что обеспечивает выходной сигнал, который заставляет форму сигнала T1 и, таким образом, форму сигнала TA быть неизменной в позиции по отношению к действию модуляции. Имея в виду это ограничение, чтобы достичь синхронного детектирования входного сигнала, выходной сигнал T1 эталонного генератора 234 задерживается на период, равный, по существу, одной четвертой периода P главного дифракционного максимума эталона и входного сигнала, и подается в качестве сигнала TA с входным сигналом EA на умножающий смеситель 226. Как можно заметить, результирующий задержанный сигнал TA находится теперь вблизи синхронизации с входным сигналом EA, и, таким образом, выход умножителя 226 обеспечивает, по существу, максимальный сигнальный выход. В моменты, когда сигнал отсутствует или имеется шумовой сигнал на сигнальном входе смесителя 226, между входными сигналами EA прошедшее время будет точно 40 миллисекунд, показанных на фиг. 4, а от смесителя 226 появится полное минимальное временное отклонение в выходе.

Сигнальный выход смесителя 226 интегрируется в интеграторе 250, и выходной сигнал умножается на коэффициент 0,05 усилителем 252. Затем этот выходной сигнал с половинным напряжением подается на инвертирующий вход компаратора 254, и это напряжение представляет одну вторую пикового выходного сигнала интегратора 250. В то же время второй выходной сигнал интегратора 250 подается через схему задержки 256 на неинвертирующий вход компаратора 265, для достижения уровня опорного сигнала, который будет, по существу, свободен от переменной работы этих двух устройств. Выход компаратора 254 представляет существенно точный временной маркер, который меняется с позицией входного сигнала EA. Затем он подается на вход сброса триггера 258, причем вход установки в "1" получает сигналы с выхода задержки 232, которая представляет из-за фильтра нижних частот 253 средний интервал между входными сигналами, таким образом, обеспечивая опорный уровень, относительно которого может соотноситься управляемый модуляцией переменный во времени выходной сигнал компаратора 254. Он связан со свойством выходного сигнала задержки 232 служить входным сигналом установки "1" в триггере 258. Таким образом, например, выходной сигнал триггера 258 будет возрастать в согласованное время, связанное со средней частотой повторения, как, по существу, диктуется фильтром нижних частот 253. Таким образом, выходной сигнал триггера 258 будет установлен обратно в ноль за время, которое отражало модуляцию информации на входном сигнале. Таким образом, мы будем иметь высоту импульса постоянной амплитуды, но при ширине импульса, которая изменяется непосредственно с модуляцией. Выходной сигнал триггера 258 затем подается через фильтр 260 нижних частот, который преобразует сигнал от демодуляции ширины импульса и модуляции сигнала амплитуды, который затем воспроизводится громкоговорителем 262.

Предполагая, что генератор 33 двоичной последовательности передатчика 10 и генератор 228 двоичной последовательности "A" для приемника работают, по существу, синхронно, эффект подмешивания псевдослучайного сигнала, создаваемого генератором 33 передатчика 10, не будет иметь смещающего положения воздействия на сигнал.

Как предположено выше, чтобы гарантировать синхронизацию, требуется некоторая форма сигнализации между передатчиком и приемником, например, для старта генератора бинарной последовательности, генератора 33. Это может быть сделано посредством вспомогательного передатчика или посредством декодирующего устройства, в котором должен быть предусмотрен в заключение, скажем, одной последовательности генератора 33 двоичных последовательностей стартовый сигнал для генератора 228 двоичных последовательностей приемника. При отсутствии этого в режиме свободного хода должна быть эффективной синхронизация посредством работы эталонного генератора 234, которая для коротких кодов и относительно низких уровней шумов будет относительно короткой, а для более длинных кодов или моментов, когда шум представляет значительную проблему, для синхронизации потребуются более длинные периоды. Где необходимо, чтобы принимающая станция могла бы передавать обратно на первоначальную передающую станцию подтверждение, что синхронизация достигнута.

Из вышеизложенного должно быть ясно, что заявитель создал недорогую и практичную систему временной области для связи. Хотя была описана система, в которой одиночный короткий импульс, например наносекундный, передается при частоте повторения, такой, что между импульсами 40 микросекунд, изобретение предполагает, что может быть послана группа импульсов, которая была бы отделена более длительным периодом. Таким образом, например, 8-битовый набор мог бы быть передан как группа, в которой просто имеется пространство между импульсами для детектирования их многопозиционных сдвигов при модуляции. При таком устройстве необходимо оценить, что эта смысловая передаваемая информация повторяется до 256 раз, или помехоустойчивость может быть благодаря этой технологии и другим, связанным с ней, значительно улучшена.

Фиг. 5, в частности, иллюстрирует радиолокационную систему в соответствии с настоящим изобретением для определенного диапазона. Импульсно-чувствительная или импульсная антенна 200, или антенна 201, как показано на фиг. 6а, передатчика 239, включает в себя треугольные элементы A и B с близко расположенными, 0,050 дюймов, базами. Размер базы и размер, перпендикулярный к базе каждого элемента, составляет приблизительно 4-1/2 дюйма и далее обсуждается и иллюстрируется со ссылкой на фиг. 6 и 7. В типичном случае рефлектор должен использоваться, как иллюстрируется на фиг. 8. Другой вариант, как показано на фиг. 6а, база уменьшается до 2-1/4 дюйма, в которой элементы половинные, как показано на фиг. 6а. Важно, однако, что длина пути от точки питания до края одна и та же в обоих случаях.

Передатчик в основном управляется устройством 310 управления. Оно включает в себя часть 312, управляющую передаваемыми последовательностями, которая определяет временную диаграмму передаваемых сигнальных разрывных последовательностей, например 10000 разрывных последовательностей импульсов в секунду, в каковом случае устройство 312 управления передаваемыми последовательностями генерирует выход 10000 Гц на выводе 314. Генератор 316 работает при более высоком уровне, например 20 МГц.

Сигнальный выход устройства 312 управления передаваемыми последовательностями используется для выбора отдельных импульсных выходов генератора 316, чтобы получить действительный импульс, который используется в качестве главного импульса для управления как выходом передатчика 318, так и временной диаграммой принимаемых функций, как будет описано далее. Чтобы недвусмысленно и повторно выбрать рабочий импульс с низкой временной неопределенностью от генератора 316, выбор составляет один и некоторая дробь импульсного интервала генератора после начального сигнала от управляющего устройства 312. Выбор выполняется через управляющую последовательность, использующую триггеры 381, 320 и 322 1-типа. Таким образом, управляющий импульс передаваемой последовательности на выводе 314 подается на вход синхронизации триггера 318. Это заставляет Q выход триггера 318 перейти в высокое состояние, и оно подается на 1 вход триггера 320. После этого выход генератора 316 выдает возрастающий фронт на вход синхронизации триггера 320. В это время высокий уровень 1-входа этого триггера подается на Q выход. Аналогично Q выходной сигнал триггера 320 подается на 1 вход триггера 322, и следующий возрастающий фронт импульса от генератора 316 заставит инверсный Q выходной сигнал триггера 322 стать низким, и это инициализирует начало цикла приема-передачи.

Для режима передачи инверсный Q выходной сигнал триггера 322 подается в качестве входного сигнала на аналоговую программируемую задержку 313 и на счетчик 315. Счетчик 315, например, будет реагировать на инверсные Q выходы триггера 322 и досчитывает до выбранного номера, например 356, и счет снова циклически повторяется. Его двоичный выходной сигнал будет подан в качестве адреса на устройство 317 памяти, ПЗУ или ОЗУ, которое будет хранить или в числовом адресуемом порядке или в произвольно выбранном порядке, номер. В результате, будучи адресованным, дискретный выходной номер будет подан на цифроаналоговый преобразовательный блок 321. Цифроаналоговый преобразовательный блок 321 должен затем создать аналоговый сигнальный выход, пропорциональный входному номеру. Этот выходной сигнал используется в последовательно работающей программируемой задержке 313 для задержек импульсов от триггера 322 на величину, пропорциональную сигналу от цифроаналогового преобразователя 321. Диапазон задержек в типичном случае будет вплоть до номинального распределения интервалов времени между импульсами, в этом случае до 300 наносекунд, в частности до 99 наносекунд. Задержанный выходной сигнал программируемой задержки 313 затем подается на устройство 324 фиксированной задержки, которое создает фиксированную задержку в 200 наносекунд для каждого импульса, который она принимает. Таким образом задержанные импульсы затем подаются на генератор запускающих импульсов 323. Генератор 323 запускающих импульсов, например транзистор, работающий в лавинном режиме, будет создавать быстро возрастающий выход на уровне 10000 Гц или подобный отклик светового выхода, например, посредством лазера, в зависимости от управляемого передатчика. В соответствии с одной особенностью этого изобретения генератор 323 запускающих импульсов должен быть ультрафиолетовым лазером. В любом случае импульс генератора запускающих импульсов 323 подается на и быстро включает переключатель 335, который, например, может опять быть электрически управляемым или светоуправляемым переключателем, таким как алмазный переключатель, в ответ на ультрафиолетовый лазер, запускающий устройство. Важно, что он должен быть способен переключаться за период в наносекунду или меньше. Затем он включается для разрядки антенны 200, ранее заряженной от источника B питания через резисторы P1 и P2, причем источник B имеет, например, от 100 до 5000 вольт.

Выпуклая импульсная антенна 200 или 200a (фиг. 6a) включается или выключается, или последовательно то и другое переключающей сборкой 315, которая подает ступенчатые изменения напряжения на антенну. Эти сигналы разрывной последовательности импульсов затем передаются в пространство через направленный вариант антенны 200, как иллюстрируется на фиг. 8 и 9, или просто всенаправленной антенной, как показано, антенной 200 на фиг. 1 или 200а на фиг. 6а.

Отраженные от цели сигналы приняты приемником 326, обычно расположенным около или вместе с передатчиком 319, через принимающую антенну 200, которая должна, например, быть подобной передающей антенне. Принятые сигналы усиливаются в усилителе 328 и подаются на смеситель 330 вместе с сигналом от эталонного генератора 332, управляемого линией 336 задержки, которая синхронизируется для создания сигналов, обычно в конфигурации половины периода и соответствующих во времени ожидаемому времени прибытия сигнала от цели в выбранном диапазоне.

Смеситель 330 служит для перемножения двух входных сигналов, и там где имеются сигналы совпадения, временные и с совпадающими сигналами одинаковой или неодинаковой полярности, там имеется достаточный и интегрируемый выход, указывающий цель на расстоянии. Смеситель и последующие схемы могут быть повторно использованы для прибывающих позже сигналов, представляющих различную дальность, эта дальность или разделение во времени достаточны, чтобы завершить время обработки для приема и интегрирования в диапазоне, как будет описано. Могут быть использованы дополнительные подобные смесители и последующие схемные наборы, чтобы заполнить щели в диапазоне между величинами, характерными для одного набора.

Поскольку необходимо определить присутствия или отсутствия цели, на основании числа сигнальных отсчетов, например, выполненных посредством интегрирования, где истинная цель не существует, появление сигналов, принятых смесителем 330, соответствующих времени приема сигналов от эталонного генератора 332, будет в типичном случае создавать сигналы, которые изменяются не только по амплитуде, но также и по полярности. Необходимо иметь в виду, что настоящая система определяет информацию не мгновенно, но после некоторого периода времени, зависящего от преобладания когерентных сигналов во времени, являющегося аспектом передач во временной области. Важно, что эталонный генератор создает эталонную сигнальную разрывную последовательность импульсов, которая не длиннее, чем действующий сигнал, который принимается, и несет согласованное с ним соотношение во времени, одинаковой или противоположной полярности. Как предположено выше, принятые сигналы, которые не несут это соотношение с эталонным сигналом, будут, по существу, затухать. Как один сигнал, эталонный сигнал является просто сигналом разрывной последовательности импульсов одной полярности. Предполагая, что он сохраняет описанное временное соотношение, эффективное детектирование может быть достигнуто.

Для целей иллюстрации внимательно рассмотрим одиночный временной промежуток для опережающих отраженных сигналов, сопровождающих сигнальные разрывные последовательности импульсов от передающей антенны 200 или 200а. Соответственно, эталонный генератор 332 управляется как функция синхронизации передатчика. Чтобы выполнить это, используются грубый счетчик 335 интервалов задержки и программируемая линия 336 тонкой задержки. Счетчик обратного действия 335 считает число импульсных выходов от генератора 316, которые появляются последовательно с управляющим входом на выводе 338, выходе блока 313 программируемой задержки. Дискретное число импульсов, принятых от генератора 316, является программируемым в счетчике 335 обратного действия посредством выхода X с загрузочного счетчика 341 на выводе 340 управляющего устройства 310, распространенное устройство, в котором двоичный счет генерируется в управляющем устройстве 310 и загружается в обратный счетчик 335. В качестве примера мы предполагаем, что желательно проверить отраженный сигнал, который появляется через 175 наносекунд после передачи сигнала с антенны 200а. Чтобы выполнить это, мы загружаем в обратный счетчик 335 число "7", которое означает, что будет сосчитано семь импульсных выходных сигналов генератора 216, отделенных друг от друга на 50 наносекунд. Так достигается 350-наносекундная задержка в обратном счетчике 335, но вычитая 200 наносекунд, как введенных устройством 324 задержки, мы будем иметь действительно выходной сигнал обратного счетчика 335, появляющийся через 150 наносекунд после передачи разрывной последовательности импульсов передающей антенной 200 или 200 а. Чтобы достичь точной синхронизации в 175 наносекунд, выполняется дополнительная задержка посредством программируемой линии 336 задержки, которая запускается выходом обратного счетчика 335, когда его счет до семи завершается. Он программируется обычным способом посредством загрузки задержки 342 управляющего устройства 310 на вывод Y, и, таким образом, в описанном примере программируемая линия 336 задержки будет запрограммирована на задержку входного импульса, поданного на нее, на 25 наносекунд. При этом способе программируемая линия 336 задержки обеспечивает импульсный выход на эталонный генератор 332 через 175 секунд после того, как он будет передан передающей антенной 200. Эталонный генератор, таким образом, синхронизируется для обеспечения, например, положительной половины периода или меандра на смеситель 330 или дискретную последовательность или эталон положительных и отрицательных отклонений от средней линии.

Выход смесителя 330 подается на аналоговый интегратор 350. Предполагая, что имеется сходство или несходство полярности дискретной сети между эталонным сигналом и принятым сигналом во время синхронизированного присутствия эталонного сигнала, аналоговый интегратор 350, который эффективно интегрирует в течение периода эталонного сигнала, будет обеспечивать выходной дискретный сигнал. Если принятый сигнал не смещен целевым сигналом, наложенным на него, он будет, в общем, содержать положительное содержание такой величины, как отрицательное содержимое на временной основе; и, таким образом, при перемножении с эталонным сигналом произведение получает эту характеристику, и аналогично на выходе интегратора 350 будет столько же дискретных произведений положительных, сколько отрицательных. С другой стороны, при содержимом целевого сигнала будет смещение в том или ином направлении, то есть будут большие сигнальные выходы аналогового интегратора 350 одной полярности, чем другой. Выходной сигнал аналогового интегратора 350 усиливается в усилителе 352 и затем синхронно с процессом мультипликации дискретные сигналы, испускаемые аналоговым интегратором 350, дискретно отбираются и запоминаются в устройстве 354 дискретизации и хранения. Эти отсчеты затем подаются на аналого-цифровой преобразователь 356, который переводит в счет время обработки, требуемое устройством 354 дискретизации и хранения. Далее дискретные с цифровой калибровкой положительные и отрицательные значения сигнала подаются от аналого- цифрового преобразователя 356 на цифровой интегратор 362, который затем в цифровом виде суммирует их, чтобы определить имеется или нет достаточное сетевое напряжение одной полярности или другой, с индикацией, когда есть такой случай, что цель присутствует в выбранном диапазоне. Обычно число передач задействовано в последовательности, например, 10, 100 или даже 1000 передач, в которых должно наблюдаться одно и то же время прохождения сигнала на приеме, и любые сигналы, появляющиеся в течение подобных передач, должны затем интегрироваться в цифровом интеграторе 362, и этим способом восстанавливают сигналы из окружающих, несинхронизированных сигналов, которые из-за произвольной полярности эффективно не интегрируются.

Выход цифрового интегратора 362 должен выводиться на дисплей 364, синхронизированный во времени соответствующим сигналом от линии 336 задержки (и устройства 358 задержки), который, таким образом, будет иметь возможность показать временную или дистанционную позицию отражения сигнала в смысле расстояния от радиолокационного устройства.

Фиг. 6 и 7 иллюстрируют виды сбоку и спереди антенны 200. Необходимо заметить, что антенные элементы A и B являются треугольными с близко расположенными друг к другу базами, а переключатель 225 подключен близко к базам элементов, как показано. В качестве примера и как описано выше, было обнаружено, что сигналы разрывных последовательностей импульсов высокого качества могут излучать импульсы, имеющие ступенчатое изменение напряжения, происходящее в одну наносекунду или меньше, в которых база каждого элемента составляет приблизительно 4-1/2 дюйма, а высота каждого элемента приблизительно такая же. Другой вариант антенны может быть, например, во всех случаях, подобных показанным на фиг. 6а, где антенна 200а срезана наполовину, чтобы иметь базовый размер в 2-1/4 дюйма. Антенны, иллюстрируемые на фиг. 6, 7 или 6а, могут использоваться как антенны в любом из чертежей.

Фиг. 8 и 9 схематически иллюстрируют антенную сборку, в которой кратное, в этом случае 16, отделяет наборы антенных элементов, каждый выдвинут вперед от металлического рефлектора 200а на расстояние приблизительно три дюйма для расстояния между вершинами элементов антенны в девять дюймов. Антенна поддерживается изолирующими опорами 200b*, а переключатели 225* (режим передачи) показаны, как запитывающиеся от запускающих источников 323, которые обычно могут быть на обратной стороне рефлектора 200а, и таким образом, любое паразитное излучение, которое могло бы струиться назад перед этим расположением к линии передачи, эффективно экранируется. Множество антенн может работать в унисон, то есть каждая антенна запускается (в случае передатчика) и соединяется (в случае приемника) с похожей синхронизацией, в каковом случае антенна должна иметь обзор или путь, перпендикулярный к антенной матрице или поверхности рефлектора как целому. Другой вариант, где желательно осуществить лучевое управление, синхронизация посредством комбинации запускающих средств (принимающих или передающих) должна изменяться. Так, например, в случае приема, несмотря на то, что выходы всех антенн в колонне могут быть соединены в сходной временной точке, выходы от других колонок могут быть задержаны перед конечным соединением всех сигналов. Задержки могут быть просто определены длинами выводов, и, в общем, кратные эффекты достижимы в почти неограниченных сочетаниях.

Другой вариант, антенные элементы могут быть организованы в формате с концевым возбуждением, в котором каждый элемент управляется с или без рефлектора. Они могут быть организованы в матрицы, как иллюстрируется на фиг. 9а и 9, в которых четыре блока Y1, Y2, Y3 и Y4 с концевым возбуждением используются и размещаются перед общим рефлектором. Другой вариант, рефлектор может быть опущен, и еще один вариант, перед матрицей может быть помещен абсорбер для поглощения волн, соответствующих паузе.

Фиг. 10 схематически иллюстрирует переключатель передачи, в котором основным переключающим элементом является транзистор 400, работающий в лавинном режиме, эмиттер и коллектор которого соединены через подобные резисторы 402 с антенными элементами A и B антенны 200, причем резисторы имеют, например, 25 Ом каждый (для антенны, показанной на фиг. 6а, они должны быть удвоены). Во время между запуском включения лавинного транзистора 400 он заряжается от напряжения постоянного тока, например 150 вольт, которые согласованы с точкой лавинной работы транзистора 400. Заряд осуществляется через плюсовую и минусовую клеммы питания через подобные резисторы 404 к антенным элементам A и B. Первичная обмотка импульсного трансформатора 408 запитывается запускающим импульсом, например, от триггерной схемы 323 фиг. 5, а его вторичная обмотка подключена между базой и эмиттером транзистора 400. В типичном случае линия передачи для запускающего импульса должна быть в виде коаксиального кабеля 410. При запуске включенного состояния транзистор 400 закорачивает антенные элементы A и B и создает передачу сигнала от антенны 200 (или антенны 200а).

Фиг. 11 иллюстрирует модифицированную форму подачи заряжающего напряжения на антенные элементы A и B, в этом случае через источник постоянного неизменяющегося тока, и в котором заряжающее напряжение подается через конденсатор 409 по коаксиальному кабелю 412, который также подает запускающее напряжение на трансформатор 408, подключенный, как описано выше. Например, положительное напряжение подключено к внутреннему проводнику коаксиального кабеля 412, обычно от удаленного расположения (не показано). Это напряжение затем подается от внутреннего проводника коаксиального кабеля через вторичную обмотку импульсного трансформатора 408 и резистор 414, например, имеющий 1 КОм, на коллектор транзистора 416, имеющего возможность выдерживать напряжение смещения, приложенное к переключающему транзистору 400 (например, 150 вольт). Положительное напряжение также подается через резистор 418, например, имеющий значение 220 КОм, на базу транзистора 416. Чтобы осуществлять постоянное токовое управление, посредством стабилитрона 420, в параллель с которым находится конденсатор 422, образована управляющая цепь, этот стабилитрон устанавливает выбранное напряжение на нем, например 7-1/2 вольт. Это напряжение затем подается через переменный резистор 424 на эмиттер транзистора 416, чтобы установить постоянное напряжение между базой и эмиттером и посредством этого постоянный уровень тока через цепь эмиттер-коллектор транзистора 416, и таким образом ток в антенну. В типичном случае он устанавливается, чтобы осуществить полный заряд напряжением антенны за приблизительно 90% времени между разрядками переключателя посредством транзистора 400. Таким образом регулируемый ток заряда подается через резисторы 406 на антенные элементы A и B. В этом случае резисторы 402 разряда, согласования и нагрузки непосредственно подключены между транзистором 400 и антенными элементами A и B, как показано.

Фиг. 12 иллюстрирует использование светочувствительного элемента в качестве переключателя, такого как светочувствительный лавинный транзистор 424, другой вариант, объемное полупроводниковое устройство или объемный кристаллический материал, такой как алмаз, может использоваться в качестве переключателя, причем переключающие клеммы находятся на обеих сторонах объемного материала. Управляющая схема может быть подобной показанной на фиг. 10, за исключением того, что вместо электрической запускающей системы волоконная оптика 426 обеспечит световой вход в светочувствительный материал, который обеспечит быстрое изменение от высокого к низкому сопротивления между клеммами, чтобы осуществить переключение.

Фиг. 13 аналогична фиг. 11 и 12 в том, что там используется источник питания постоянного тока со светочувствительным переключающим элементом 424, таким как светочувствительный транзистор, как показано. Поскольку здесь отсутствует коаксиальный кабель для ввода запускающих сигналов, для напряжения смещения должны быть предусмотрены другие средства. В некоторых применениях это просто может быть батарея с преобразователем постоянный ток в постоянный ток для создания желаемого напряжения источника на плюсовой и минусовой клеммах.

Фиг. 14 и 15 иллюстрируют применение кратных переключающих элементов, в действительности на каждом чертеже показано два работающих в лавинном режиме транзистора 450 и 452, соединенных через коллектор-эмиттер последовательно с резисторами 402 и антенными элементами A и B. Как можно заметить, отдельные трансформаторные вторичные обмотки запускающего трансформатора 454 используются для отдельного запуска транзисторов, работающих в лавинном режиме. Первичная обмотка трансформатора обычно запитывается через коаксиальный кабель, как, в частности, иллюстрируется на фиг. 10. Антенные элементы A и B (или 200 или 200а) заряжаются между случаями разряда от плюсовой и минусовой клемм питания, как показано.

Фиг. 13 дополнительно иллюстрирует использование источника постоянного тока, как описано, для варианта осуществления, показанного на фиг. 10 и 7. Действительно, система питания от источника постоянного тока через коаксиальный кабель, как показано на фиг. 9, может подобным образом использоваться со схемой, показанной на фиг. 14.

Обратимся к фиг. 16, здесь иллюстрируется радиолокационная система, в частности, предназначаемая для обзора средств обслуживания, в частности для обнаружения движущихся целей, обычно людей. Передатчик 500 включает в себя 16 МГц синхронизирующий сигнал, который генерируется генератором 501 сигналов. Этот сигнал затем подается в делитель 402 на 16, чтобы обеспечить выходные сигналы 1 МГц. Один из этих 1 МГц выходов подается на 8-битовый счетчик 504, который досчитывает до 256 и повторяет сначала. Другой 1 МГц выход делителя 502 на 16 подается через аналоговое устройство 506 программируемой задержки, в котором каждый импульс задерживается на величину, пропорциональную приложенному аналоговому управляющему сигналу. Аналоговый блок 506 задержки управляется величиной счета от счетчика 504, которая преобразуется в аналоговое напряжение, пропорциональное этому счету, цифроаналоговым преобразователем 509 и подается на управляющий вход аналогового блока 506 задержки.

При таком устройстве каждый из 1 МГц импульсов от делителя 502 на 16 задерживается на дискретную величину. Затем импульс подается на блок 508 фиксированной задержки, который, например, задерживает каждый импульс на 60 наносекунд, чтобы обеспечить достаточное время обработки приемником 510 отражений сигналов. Выходной сигнал блока 508 фиксированной задержки подается на генератор 512 пусковых импульсов, например, работающий в лавинном режиме транзистор, который обеспечивает быстрый возрастающий временной импульс. Его выходной сигнал подается на переключатель 514, в типичном случае транзистор, работающий в лавинном режиме, как иллюстрируется на фиг. 10 или 11. Антенна 200 (или 200а) непосредственно заряжается через резисторы 504 A от конденсатора 507 (фиг. 11), который в общем сохраняет напряжение питания, поданное на плюсовую и минусовую клеммы.

В приемнике 510 антенна 512, идентичная антенне 200 или 200а, принимает отраженные сигналы и подает их на смеситель 514. Смеситель 514 умножает принятые от антенны 512 сигналы на локально генерируемые сигналы от эталонного генератора 516. Эталонный генератор запускается через схему цепи задержки аналогового блока 506 задержки и блока 518 регулируемой задержки, который устанавливается для достижения генератора эталонного сигнала во время, соответствующее сумме задержек, создаваемых устройством 508 фиксированной задержки и времени, протекающее до и от цели на выбранной дистанции. Выход смесителя 514 подается на кратковременный аналоговый интегратор 520, который непосредственно интегрирует период каждого эталонного сигнала. Затем его выход подается на долговременный интегратор 522, который, например, может быть активным фильтром нижних частот и интегрирует в течение приблизительно 50 миллисекунд, или в смысле передач сигналов, вплоть до, например, приблизительно 50000 таких передач. Выходной сигнал интегратора 522 усиливается в усилителе 521 и проходит через регулируемый фильтр 526 верхних частот на устройство 530 сигнализации. При таком устройстве только сигналы переменного тока, соответствующие движущимся целям, проходят через фильтры, при фильтре 526 верхних частот, устанавливающем нижний предел скорости для цели и фильтре 522 нижних частот, определяющем более высокую скорость цели. Например, фильтр 526 верхних частот может быть установлен для пропуска сигналов от целей при более высокой скорости, чем 0,1 фута в секунду, а интегрирующий фильтр 522 нижних частот приспособлен для пропуска сигналов, представляющих цели, движущиеся меньше, чем 50 миль в час. Принимая во внимание, что отраженные сигналы проходят через оба эти фильтра, можно управлять визуальной сигнализацией.

Фиг. 17 иллюстрирует модификацию фиг. 16 для передне-концевой части приемника 610. Как можно заметить, имеется два выхода антенны 200, по одному для каждого из отдельных смесителей 650 и 652, выход смесителя 650 запитывается непосредственно от эталонного генератора 618, а выход смесителя 652 запитывается от эталонного генератора 618 с задержкой в 0,5 наносекунды посредством блока 654 0,5 наносекундной задержки. Выходные сигналы смесителей 650 и 652 затем отдельно интегрируются в кратковременных интеграторах 656 и 658 соответственно. После этого выходные сигналы каждого из этих кратковременных интеграторов подаются на отдельные долговременные интеграторы 460 и 462, после которых их выходы соединяются в дифференциальном усилителе 664. Выход дифференциального усилителя 664 затем подается на фильтр 626 верхних частот и затем на устройство 630 сигнализации, как обсуждалось выше в связи с фиг. 16. Другой вариант, один долговременный интегратор может заменить два, помещенных после дифференциального усилителя 664.

При такой технологии достигается реальная временная дифференциация между объектами с широкой границей, такими как деревья, и объектами с резкой границей, таким как человек. Таким образом, учитывая, что в один момент сложное отражение создает дискретный сигнал и позже, например позже на половину наносекунды, нет изменения в объекте передачи, то должна быть постоянная разность в выходах смесителей 650 и 652. Однако в случае, когда изменение произошло, например при движении человека, должны быть изменения в разности между сигналами, появляющимися в два разных момента времени, и, таким образом, должна быть разность в выходе дифференциального усилителя 564. Этот выход должен затем быть подан на фильтр 526 верхних частот (фиг. 12) и будет представлять дискретное изменение в сигнале, который, учитывая, что он встречается с необходимыми условиями фильтров 526 и 528 верхних частот и нижних частот, будет сигнализирован посредством устройства 530 сигнализации.

Что касается системы, иллюстрируемой на фиг. 16, она имеет возможность детектировать и дискриминировать с высокой чувствительностью движущийся объект в пределах скоростей, описанных выше и при дальности работы в несколько сотен футов или более. Например, движение объекта в диапазоне дальности приблизительно один фут выбранного периметра измерения является наблюдаемым, не включая чувствительность на других расстояниях, которые не являются ни критичными, ни требуемыми при работе. Действительно это свойство, в основном, выделяет работу этой системы по отношению к известным системам, в общем, поскольку оно облегчает их основную проблему: фиксацию ложных сигналов тревоги. Таким образом, например, настоящая система может быть помещена внутри здания и установлена для обнаружения движения внутри периметра окружности внутри здания, через который должен пройти нежелательный гость. Система должна быть нечувствительна к прохожему сразу за пределами здания. С другой стороны, если желательно обнаружить людей, приближающихся к зданию, или в случае приближающиеся объекты внутри или снаружи здания, то необходимо лишь установить дальность, соответствующую интересующему периметру. В общем, стены не представляют преграды. Действительно в одном тесте внутри периметра была стопка бумаги толщиной четыре фута. В этом тесте движение человека сразу на другой стороне этого барьера было обнаружено.

Когда описанная таким образом работа предполагает одиночный периметр, посредством простой ручной или автоматической регулировки может быть выполнено наблюдение на различных расстояниях. Расстояния могут быть в смысле круглого периметра, или при использовании направленной антенны (антенна 200 с рефлектором), или антенная решетка типа "волновой канал", осуществляются наблюдения в дискретных дугах.

Фиг. 18 иллюстрирует применение радиолокационного устройства заявителя к направленной работе, которая может покрывать круговую область, например от 20 до 30 футов до нескольких тысяч футов в радиусе. В этом примере допускается, что имеется расположенная в выбранной центральной позиции передающая антенна, в этом случае ориентированная вертикально, как направленная или всенаправленная антенна 600. Затем имеются расположенные вокруг нее через 120o одинаковые принимающие антенны 602, 604 и 606. Антенна, например 200, как описано выше, запитывается пусковым переключающим передатчиком 607. Предполагая, что с передающей антенны 200 передается одиночная сигнальная разрывная последовательность импульсов, она будет излучаться в пространство в окружности 360o. В некоторое выбранное время, как обсуждалось выше, приемники 608, 610 и 611 должны запитываться эталонным сигналом, как описано выше, чтобы таким образом при работе заставить приемники снимать отсчет эхо-сигнала, принимаемого точно в этот момент. Этот процесс будет повторяться в увеличивающиеся или уменьшающиеся с приращением периоды времени, и, таким образом, в запоминающих устройствах 612, 614 и 616 будут запомнены сигналы, представляющие диапазон прошедших времен. Затем посредством выбора комбинации прошедших времен для каждого приемника в смысле триангуляризации возможно выбрать сохраненные сигналы из запоминающих устройств, представляющие отдельное размещение в пространстве. Для целей обзора результат сигналов, полученных от одного сканирования и более позднего сканирования, должен в цифровом виде вычитаться, и, таким образом, там, где объект в некоторой точке внутри диапазона устройства передвинулся в новую позицию, появится разница в сканируемой информации. Это, следовательно, будет сигнализировать, что, возможно, что-то вторглось в зону. Этот процесс в общем будет управляться устройством 618 считывания записи, которое будет контролировать запоминающие устройства 612, 614 и 616 и будет управлять компаратором 620, который должен принимать выбранные значения X, Y и из запоминающих устройств 612, 614 и 616, чтобы сделать вычитание. Дисплей 622, такой как осциллограф, может применяться для показа на относительной позиции изменения объекта по отношению к позиции радиолокационного устройства.

Фиг. 19 иллюстрирует применение изобретения заявителя к радиолокационной системе, в которой имеется одна передающая антенна, например антенна 200, размещенная в дискретной плоскостной позиции по отношению к направлению наблюдения, три принимающих антенны, расположенных в плоскости, параллельной и отделенной от первой плоскости, и четвертая принимающая антенна, расположенная в третьей плоскости. Таким образом, излучение от передающей антенны 404, которое отражается целью, принимается четырьмя принимающими антеннами в разное время из-за разницы в длине пути. По причине уникального свойства системы заявителя в том, что она может использоваться для различения вплоть до дюймов, от отраженных сигналов может быть получена чрезвычайная четкость. Управляющее устройство 700 направляет передачу передатчика, например 200, который подает сигнальную разрывную последовательность импульсов на передающую антенну 704. Отраженные сигналы принимаются антеннами 706, 708 и 710, расположенными, например, в плоскости, в общем перпендикулярной к направлению обзора, и отделены от плоскости, в которой размещена передающая антенна 704. Четвертая принимающая антенна 712 размещена еще в одной, третьей плоскости, которая перпендикулярна к направлению обзора, и, таким образом, в плоскости, отделенной от плоскости, в которой размещены другие принимающие антенны. Благодаря этому созданы средства для локализации через триангуляризацию цели в пространстве, и таким образом получают достаточную информацию сигнала для обеспечения показа трехмерной информации. Сигналы, принятые от приемников 712, 714, 716 и 718, отдельно подаются на устройство 720 обработки и сравнения сигналов, которое включает в себя запоминающее устройство для запоминания всех полученных отсчетов и в смысле их времени приема. Из этих данных можно вычислить информацию о позиции посредством соответствующего сравнения, а также характеристики цели, такие как размер и отражательная способность, и показать на дисплее 722.

Из вышеизложенного должно быть очевидно, что заявитель разработал совершенную радиолокационную импульсную систему, пригодную для всех типов систем связи.

Формула изобретения

1. Система радиопередачи временных интервалов, содержащая передатчик, включающий в себя источник питания, последовательно соединенные импульсный генератор, источник смещения постоянного тока, переключатель и передающую антенну, при этом переключатель соединен с импульсным генератором и подключен между источником смещения постоянного тока и передающей антенной и приемник, включающий в себя последовательно соединенные широкополосную антенну, смеситель сигналов, генератор когерентных сигналов, выход которого соединен со вторым входом смесителя сигналов, и интегратор, соединенный со смесителем сигналов, отличающаяся тем, что антенна выполнена в виде пары элементов треугольной формы при наблюдении в двухмерном пространстве, причем основания указанной пары элементов являются параллельными и близлежащими, а источник питания подсоединен через ключ к параллельным близлежащим основаниям указанных элементов треугольной формы.

2. Система по п.1, отличающаяся тем, что генератор когерентных сигналов управляется сигналами с импульсного генератора для генерирования выбранных сигналов детектирования с задержкой.

3. Система по п.1, отличающаяся тем, что импульсный генератор включает в себя источник информационных сигналов и источник сигналов, изменяющихся во времени, причем выходной сигнал импульсного генератора содержит последовательность импульсов, изменяющихся во времени в зависимости от обоих указанных источников, генератор когерентных сигналов включает в себя средство генерирования задержанных сигналов детектирования в функции от указанного источника сигналов, изменяющихся во времени.

4. Система по п. 1, отличающаяся тем, что переключатель подключен непосредственно между основаниями элементов треугольной формы антенны.

5. Система по п. 1, отличающаяся тем, что указанный переключатель выполнен по меньшей мере на одном фотопроводящем переключателе.

6. Система по п.1, отличающаяся тем, что содержит слой нормально высокоомного, но светочувстивительного с низким на свету сопротивлением материала, пару раздельных электродов, соединенных с основаниями элементов треугольной формы и запускающее средство, содержащее источник света, чувствительный к сигналам с импульсного генератора, для подачи дискретного приращения света на указанный слой материала имеющего такие характеристики, при которых указанный материал переходит из непроводящего состояния в проводящее между указанными электродами.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11, Рисунок 12, Рисунок 13, Рисунок 14, Рисунок 15, Рисунок 16, Рисунок 17, Рисунок 18, Рисунок 19, Рисунок 20, Рисунок 21



 

Похожие патенты:

Изобретение относится к радиотехнике

Изобретение относится к технике связи

Изобретение относится к электросвязи и может быть использовано в системах передачи данных по радиоканалам

Изобретение относится к области радиоэлектроники и может использоваться как элемент улучшения качества звука, элемент улучшения качества электронного изображения

Изобретение относится к радиотехнике и может использоваться в системах связи для приема цифровых сигналов в условиях неопределенных помех

Изобретение относится к радиолокации и может быть применено в бортовых радиолокаторах бокового обзора с синтезированной антенной (РЛБОСА)

Изобретение относится к области техники связи и измерительной технике и может быть использовано в приемниках оптимальной обработки сложных фазоманипулированных сигналов для определения наибольшего сигнала при одновременном действии на входе приемника сигнала от «земного» и «ионосферного» лучей

Изобретение относится к радиотехнике

Изобретение относится к радиотехнике и может быть использовано для повышения разборчивости зашумленного речевого сигнала

Изобретение относится к технике электросвязи и может быть использовано в приемниках сигналов радиоуправления и радиолокационных станций

Изобретение относится к способам и устройству для передачи электромагнитных сигналов в землю через конденсатор

Изобретение относится к области радиолокации и может быть использовано в перспективных РЛС для управления воздушным движением и для контроля воздушного пространства

Изобретение относится к области радиолокации и может быть использовано в перспективных РЛС для управления воздушным движение и для контроля воздушного пространства
Наверх