Способ повышения экономичности компрессора с газостатическим центрированием поршня и устройство для его осуществления

 

Способ может быть использован в поршневых компрессорах для обеспечения герметичности поршня. В цилиндре с зазором установлен поршень с газостатическим подвесом и П-образной полостью. Нижняя часть полости частично заполнена жидкостью и соединена с верхней частью гладкостенными каналами. При сжатии рабочего тела часть его через обратный клапан в поршне попадает через полость и дроссели в зазор, образуя газовый слой, препятствующий контакту поршня и цилиндра. Для охлаждения поршня жидкость из нижней части П-образной полости поршня подают в верхнюю часть по лабиринтным канавкам. Затем по гдадкостенным каналам под действием гравитационных сил жидкость возвращается в нижнюю часть П-образной полости, где охлаждается. Такое решение позволяет отказаться от легкокипящих жидкостей, что дает возможность существенно снизить требования по герметичности П-образной полости, кратно расширить диапазон давлений и температур, при которых может работать компрессор. 2 с. и 3 з.п.ф-лы, 1 ил.

Изобретение относится к компрессоростроению и может быть использовано при создании машин, сжимающих чистые газы и обладающих высоким ресурсом работы.

Известен способ повышения экономичности компрессора с газостатическим центрированием поршня, заключающийся в подаче охлажденного теплоносителя из нижней части в верхнюю часть поршня [1].

Недостатком известного способа является необходимость наличия отдельного источника питания для подачи охлаждающей жидкости.

Указанный недостаток устранен в способе повышения экономичности компрессора с газостатическим центрированием поршня, заключающемся в подъеме теплоносителя из нижней части поршня в наиболее нагретую верхнюю часть поршня за счет его возвратно-поступательного движения [2].

Недостатком данного способа является необходимость тщательного подбора легкоиспаряющейся жидкости по ее термодинамическим характеристикам и количеству. Причем использование данного способа предполагает наличие полностью высокогерметичной конструкции поршня и работу компрессора в узком диапазоне давления и внешних условий, т.к. их изменение приводит к нарушению термодинамического баланса герметичной камеры поршня, в результате чего, например, вся жидкость может оказаться в испарившемся состоянии (это кроме всего прочего грозит превышением расчетного давления и разгерметизацией камеры) и теплообмен будет происходить без фазового перехода, т.е. чрезвычайно плохо.

Задачей данного изобретения является расширение области применения способа повышения экономичности компрессора с газостатическим центрированием поршня и повышение надежности его осуществления.

Указанная задача может быть решена за счет того, что после достижения теплоносителем верхней части поршня его опускают в жидком состоянии снова в нижнюю часть поршня, и в качестве теплоносителя используют слабоиспаряющуюся жидкость, причем передачу теплоты от тела поршня в окружающую среду могут производить через промежуточный теплоноситель.

В компрессоре, содержащем картер с установленным на нем цилиндром, соединенным с линией нагнетания, поршень с газостатическим подвесом и П-образной полостью, нижняя часть которой частично заполнена жидкостью, а стенки имеют V-образные несимметричные выступы, для осуществления предложенного способа верхняя часть П-образно полости дополнительной соединена с ее нижней частью с помощью гладкостенных каналов, при этом в верхней части картера может быть образована полость, заполненная охлаждающей жидкостью, с наружными стенками, обращенными к окружающей среде, и внутренними стенками, примыкающими к нижней части поршня, и эта полость может быть соединена через обратные клапаны с теплообменником, а линия нагнетания при этом проходит через эту полость и в зоне прохождения имеет упругий элемент.

Сущность изобретения поясняется чертежом, на котором изображено схематичное сечение компрессора с газостатическим центрированием поршня, имеющем все отличительные признаки.

Компрессор состоит из картера 1, на котором установлен цилиндр 2 с полостью всасывания 3, содержащей клапан 4, и полостью нагнетания 5 с клапаном 6. В цилиндре 1 с зазором 7 установлен поршень 8 с газостатическим центрированием, осуществляемым из полости 9, соединенной с камерой сжатия 10 через клапан 11 и с зазором 7 через дроссельные отверстия 12. Поршень 8 имеет наружную гильзу 13 с лабиринтными канавками 14, которые с ответными лабиринтными канавками 15 образуют несимметричные V-образные выступы. Кроме того, в теле поршня 8 имеются гладкостенные каналы 16, соединяющие верхнюю часть П-образной полости 17 через отверстия 18 с ее нижней частью, заполненной слабоиспаряющейся жидкостью, например, минеральным маслом. Наружная гильза 13 в своей нижней части снаружи имеет многочисленные ребра 19, размещенные с минимальным зазором в ответных впадинах 20 внутренней части верха картера 1, отделенных тонкой стенкой 21 от заполненной жидкостью полости 22, соединенной через клапаны 23 и 24 с теплообменником 25, помещенным в окружающей среде. Линия нагнетания 26 проходит через полость 22 и содержит в пределах этой полости упругий элемент 27, выполненный, например, в виде отрезка шланга.

Способ работы компрессора осуществляется следующим образом. При возвратно-поступательном движении поршня 8 объем камеры сжатия 10 изменяется, что приводит к попеременному всасыванию рабочего тела через клапан 4, его сжатию и нагнетанию потребителю через клапан 6 по линии нагнетания 26. Кроме того, часть сжатого газа из камеры 10 через клапан 11 попадает в полость 9 и стекает из нее через дроссели 12 в зазор 7, образуя таким образом в зазоре 7 несущий газовый слой, препятствующий контакту поршня 8 и цилиндра 2. Образовавшаяся при сжатии газа теплота воздействует на поршень (преимущественно на верхнюю его часть). При возвратно-поступательном движении поршня жидкость из нижней части П-образной полости 17 с помощью V-образных выступов под действием инерционных сил перекачивается в верхнюю часть полости 17, охлаждает верхнюю часть поршня 3 и по каналам 16 под действием гравитационных сил возвращается в нижнюю часть полости 17, где охлаждается. Затем цикл повторяется.

Теплота от жидкости, заполняющей нижнюю часть полости 17, отводится в окружующую среду через стенки поршня 8 за счет вентиляции картера 1, а также путем теплопередачи через ребра 19, впадины 20, стенку 21 жидкости, заполняющей полость 22, которая охлаждается за счет передачи теплоты в окружающую среду через стенки картера, а также за счет прокачки этой жидкости через теплообменник 25. Прокачка жидкости осуществляется за счет изменения объема упругого элемента 27, которое неизбежно возникает в связи с наличием пульсации давления газа в нагнетательной линии, и за счет работы клапанов 23 и 34.

Наличие ребер 19, движущихся во впадинах 20, существенно увеличивает мощность отводимого от поршня 8 теплового потока, т.к. наряду с увеличением поверхности теплообмена имеет место интенсивное перемешивание газа в узком зазоре между ребрами 19 и впадинами 20 и сопутствующее этому увеличение коэффициента теплоотдачи. Наличие промежуточного теплоносителя, циркулирующего в полости 22 и теплообменнике 25 за счет естественной конвекции жидкости или путем ее прокачки, позволяет лучше использовать свойства окружающей среды для охлаждения и выравнивания по длине образующей поршня 8.

Таким образом, применение описанного способа и устройства для его осуществления позволяет отказаться от использования для охлаждения поршня легкокипящих жидкостей, что дает возможность существенно снизить требования по герметичности П-образной полости, кратно расширить диапазон давлений и температур, при которых может работать компрессор, т.к. нет опасности образования высокого давления паров в П-образной полости и возникновения состояния, при котором исчезают фазовые переходы и сопутствующий им интенсивный теплообмен.

Источники информации.

1. А. с. 947465, кл. F 04 B 31/00, 39/06, Б.И. N 28, 1982 г. Поршневой холодильный компрессор.

2. А. с. 985417, кл. F 04 B 39/06, 31/00, Б.И. N 48, 1982 г. Поршневой холодильный компрессор.

Формула изобретения

1. Способ повышения экономичности поршневого компрессора с газостатическим центрированием поршня, заключающийся в подъеме теплоносителя из нижней части поршня в наиболее нагретую верхнюю часть поршня за счет его возвратно-поступательного движения, отличающийся тем, что после достижения теплоносителем верхней части поршня его опускают в жидком состоянии снова в нижнюю часть поршня, причем в качестве теплоносителя используют слабоиспаряющуюся жидкость.

2. Способ по п. 1, отличающийся тем, что передача теплоты от поршня в окружающую среду осуществляется через промежуточный теплоноситель, циркулирующий в полости, примыкающей к нижней части поршня.

3. Устройство для осуществления способа повышения экономичности поршневого компрессора с газостатическим центрированием поршня, содержащее картер с установленным на нем цилиндром, соединенным с линией нагнетания, поршень с газостатическим подвесом и П-образной полостью, нижняя часть которой частично заполнена жидкостью, и имеющей вертикальные стенки с V-образными несимметричными выступами, отличающееся тем, что верхняя часть П-образной полости дополнительно соединена с ее нижней частью с помощью гладкостенных каналов.

4. Устройство по п.3, отличающееся тем, что в верхней части картера образована полость, заполненная охлаждающей жидкостью, причем наружные стенки этой полости обращены к окружающей среде, а внутренние стенки примыкают к нижней части поршня.

5. Устройство по п. 4, отличающееся тем, что полость, заполненная охлаждающей жидкостью, соединена через обратные клапаны с теплообменником, причем линия нагнетания проходит через упомянутую полость и в зоне ее прохождения содержит упругий элемент.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к области компрессоростроения и может быть использовано при создании компрессорных машин, применяемых для сжатия чистых газов

Изобретение относится к компрессоростроению м может быть использовано при создании машин, к которым предъявляются высокие требования по чистоте сжимаемого газа

Изобретение относится к области двигателестроения и позволяет упростить конструкцию и повысить эффективность двигателей-компрессоров со свободно-движущимися поршнями

Изобретение относится к области компрессоростроения и может быть использовано при создании компрессорных машин, к которым предъявляются высокие требования по чистоте сжимаемого газа

Изобретение относится к машиностроению и может быть использовано при проектировании поршневых машин, например компрессоров, насосов или двигателей

Изобретение относится к компрессоростроению и может быть использована в транспортных средствах при строительстве и реконструкции зданий и сооружений, в промышленности и сельском хозяйстве и других сферах человеческой деятельности

Изобретение относится к компрессоростроению, в частности к свободнопоршневому газогенератору, предназначенному для получения сжатого газа при сгорании органического топлива

Изобретение относится к области компрессоростроения, а именно к устройствам для нагнетания газа поршневого типа, и может быть использовано в различных отраслях народного хозяйства

Изобретение относится к области энергомашиностроения и предназначено для преобразования электроэнергии в энергию давления жидкого или газообразного рабочего тела. Включает систему управления, два цилиндра с распределительными клапанами и оппозитно движущимися поршневыми группами. Каждая поршневая группа состоит из поршня, штока и якоря линейного электродвигателя. Линейный электродвигатель включает статорный магнит, два магнитопровода и две катушки намагничивания. Поршневые группы ориентированы так, что оси их симметрии располагаются на одной геометрической прямой, а их движение организуется оппозитно, что исключает вибрации в результате их колебательного движения. Однако на характер движения поршней оказывает влияние и неточность изготовления поршневых групп, неравномерность сил трения между поверхностями трения, непредсказуемое перемещение насос-компрессора в пространстве и т.д. Для синхронизации движения поршневых групп система управления отслеживает значение скоростей каждой поршневой группы и сравнивает их величины. Если скорости поршневых групп не равны, система управления переводит распределительный клапан, через который рабочее тело подается в коллектор, в закрытое положение того цилиндра, в котором скорость поршневой группы больше, чем скорость оппозитно движущийся поршневой группы в другом цилиндре. В момент времени, обеспечивающий одновременность прибытия поршневых групп обоих цилиндров в точки схождения или расхождения, система управления переводит распределительный клапан в открытое положение. Устраняются вибрации корпуса. 2 ил.

Изобретение относится к области энергомашиностроения и используется для предотвращения ударов поршневых групп о торцы цилиндров в любой свободнопоршневой машине. При расхождении поршневых групп компрессора системой управления отслеживают величины давления газа в полостях поршней обоих цилиндров компрессора и на основе этих величин вырабатывают алгоритм подачи контримпульсов электроэнергии на катушки намагничивания таких длительностей, которые в конце движения поршневых групп обеспечивают торможение поршневых групп в конечных точках движения до их остановки. Затем при приближении поршневых групп к окрестностям крайних точек расхождения в соответствии с алгоритмом от системы управления подают контримпульс на одну из катушек намагничивания. В обоих магнитопроводах индуцируются магнитные потоки одного направления и в телах якорей возникают магнитные полюса различных знаков. В результате якоря втягиваются друг в друга, что приводит к остановке поршневых групп и последующему расхождению. Аналогичным образом для предотвращения ударных нагрузок системой управления действуют и при расхождении поршневых групп. Исключаются механические связи, повышается эффективность работы. 2 ил.

Изобретение относится к области энергомашиностроения. При движении поршневых групп система управления отслеживает величины давления газа в той полости поршня, где происходит его сжатие, и на основе этих величин вырабатывает алгоритм закрытия выпускных клапанов в конце движения поршневых групп с таким расчетом, чтобы по их прибытию в конечные точки движения скорости поршневых групп оказались равны нулю. Затем в соответствии с алгоритмом закрытия выпускных клапанов при приближении поршневых групп к окрестностям крайних точек движения система управления закрывает выпускные клапаны. Давление сжимаемого в компрессорных полостях поршней воздуха и, следовательно, сопротивление движению поршневых групп возрастает, что приводит к их торможению и остановке. В результате исключаются ударные нагрузки на поршневые группы и стенки цилиндров. В момент, близкий к остановке поршневых групп, система управления открывает выпускные клапаны и одновременно подает электрические импульсы напряжения на катушки намагничивания теперь уже одноименного знака, и поршневые группы начинают сходиться. При схождении поршневых групп система управления действует аналогичным образом. Цель заявленного изобретения - достигнуть предотвращения ударов поршневых групп о торцы цилиндров в любой свободнопоршневой машине, исключив какие-либо механические связи. 2 ил.

Изобретение относится к компрессоростроению и может быть использовано для получения сжатого газа или воздуха. Особенность заключается в том, что поршневой компрессор дополнительно содержит уравновешивающие эжекторы и уравновешивающие клапаны, причем поршни приводят в движение с помощью джареда механической энергии, а нагнетательная магистраль представляет собой емкость сжатого газа или воздуха, при этом надпоршневая камера первого цилиндра через ее выпускной клапан и уравновешивающий эжектор подключена к штоковой камере второго цилиндра, а штоковая камера первого цилиндра через выпускной клапан и уравновешивающий эжектор подключена к надпоршневой камере второго цилиндра, кроме того, уравновешивающие эжекторы через уравновешивающие клапаны соединены с емкостью сжатого газа или воздуха, причем впускные и выпускные клапаны надпоршневой и штоковой камер первого цилиндра выполнены самодействующими, а уравновешивающие и выпускные клапаны второго цилиндра выполнены принудительного типа действия. Технический результат: поршневой компрессор с уравновешенным встречным давлением, действующим на нагнетательный поршень, позволит использовать его в любой отрасли народного хозяйства где есть необходимость использования сжатого газа или воздуха при минимальных затратах потребляемой энергии. 1 ил.

Изобретение относится к поршневым машинам с бесконтактными лабиринтными уплотнениями и может быть использовано при создании высокоэкономичных поршневых насос-компрессоров. Машина содержит цилиндр 1 с поршнем 3, компрессорную 4 и насосную 5 полости с всасывающими 6 и 7 и нагнетательными 8 и 9 клапанами. Клапаны 7 и 9 размещены симметрично относительно оси цилиндра. Поршень 3 содержит лабиринтные уплотнения 10 и 11, имеющие разнонаправленные винтовые поверхности с прямоугольным сечением выступов. Поршень 3 имеет возможность вращаться относительно штока 12. Юбка поршня 3 снабжена лопатками 14 с вогнутой поверхностью в сторону клапанов 7. Длина L лопаток 14 превышает ход поршня Sh. Оси клапанов 7 и 9 расположены по касательной к окружности 15, лежащей в плоскости, перпендикулярной оси цилиндра 1 и проходящей через оси симметрии поперечного сечения лопаток 14. Потоки жидкости, поступающие через клапаны 7 и 9, создают вращение жидкости в полости 5, которая давит на лопатки 14, поршень 3 вращается, препятствуя винтовыми лабиринтами 10 и 11 появлению перетечек из полости 5 в полость 4 и наоборот. Повышается чистота сжимаемого газа и КПД машины. 5 з.п. ф-лы, 2 ил.
Наверх