Лопатка входного устройства гтд

 

Лопатка входного устройства ГТД выполнена с верхними и нижними элементами крепления. Во входной кромке пера лопатки выполнен продольный канал, сообщающийся с каналом подвода воздуха в верхней части лопатки и с проточной частью ГТД через отверстия в стенке лопатки на верхнем и нижнем торцах продольного канала. На выходе канала подвода воздуха выполнено закручивающее устройство, например в виде крестовины. Отверстие, выполненное в примыкающем к закручивающему устройству торце продольного канала диаметром 0,6-0,9 от диаметра последнего, расположено по центру последнего. Продольный канал выполнен круглого сечения. Такое выполнение лопатки приводит к повышению температуры входной кромки ее пера. 3 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к области двигателестроения и может найти применение в лопатках водного устройства газотурбинного двигателя.

Известны лопатки входного устройства ГТД с обогревом [1], имеющие канально-петлевую, дефлекторную, струйно-дефлекторную схемы течения теплоносителя. Существенными недостатками известных лопаток являются слабая интенсивность обогрева зоны льдообразования на входной кромке, сложность и трудоемкость изготовления дефлекторов.

Наиболее близкой к заявленной является лопатка входного устройства ГТД [2] с верхним и нижним элементами крепления, во входной кромке которой выполнен продольный канал, сообщающийся с каналом подвода воздуха в верхней части лопатки и с проточной частью ГТД через отверстия в стенке лопатки на верхнем и нижнем торцах продольного канала.

Существенным недостатком известной лопатки является слабая эффективность обогрева, обусловленная большим расходом воздуха, отбираемого на обогрев из-за компрессора ГТД, при низкой плотности теплового потока от теплоносителя в обогреваемую стенку.

Задачей изобретения является снижение возможности льдообразования на передней кромке лопатки и в целом на ее поверхности.

Решение достигается тем, что в известной лопатке входного устройства ГТД с верхним и нижним элементами крепления, во входной кромке пера которой выполнен продольный канал, сообщающийся с каналом подвода воздуха в верхней части лопатки и с проточной частью ГТД через отверстия в стенке лопатки на верхнем и нижнем торцах продольного канала, согласно изобретению на выходе канала подвода воздуха установлено закручивающее устройство, а отверстие, выполненное в примыкающем к закручивающему устройству торце продольного канала, расположено по центру последнего, причем продольный канал выполнен круглого сечения и в нем на противоположном от закручивающегося устройства торце размещено раскручивающее устройство, например в виде крестовины, а диаметр отверстия, расположенного по центру продольного канала, равен 0,6 ... 0,9 диаметра продольного канала.

Предложенная лопатка входного устройства ГТД имеет отличия от прототипа в существенных признаках: - на выходе канала подвода воздуха установлено закручивающее устройство, а отверстие, выполненное в примыкающем к закручивающему устройству торце продольного канала, расположено по центру последнего; - продольный канал выполнен круглого сечения; - в продольном канале на его торце, противоположном от закручивающего устройства, размещено раскручивающее устройство, например в виде крестовины; - диаметр отверстия, расположенного по центру продольного канала, равен 0,6 ... 0,9 диаметра продольного канала.

Следовательно, предложенное решение соответствует критерию "новизна".

Введение в конструкцию лопатки входного устройства ГТД закручивающего устройства, установленного на входе канала подвода воздуха, выполнение отверстия в примыкающем к закручивающему устройству тореце продольного канала по центру продольного канала приведет к снижению возможности льдообразования на передней кромке лопатки и в целом на ее поверхности за счет повышения эффективности обогрева стенок лопатки (при сохранении используемого для этой цели расхода теплоносителя) путем повышения плотности теплового потока, направленного от теплоносителя в тело лопатки, в наиболее опасных подверженных льдообразованию зонах.

В предложенном решении все отличительные признаки взаимосвязаны и в сочетании с другими признаками позволяют получить новый технический результат: повысить температуру входной кромки пера по всей высоте лопатки входного устройства ГДТ, тем самым повысить надежность работы противообледенительной системы двигателя, что позволит снизить расход обогревающего воздуха, отбираемого из-за компрессора двигателя, и тем самым повысить КПД двигателя, т. е. его мощность.

Следовательно, предложенное решение соответствует критерию "изобретательский уровень".

Изобретение поясняется чертежами, где на фиг. 1 изображен общий вид лопатки; на фиг. 2 - сечение А-А, на фиг. 3 - сечение Б-Б.

Лопатка входного устройства ГТД содержит перо 1 с верхним 2 и нижним 3 элементами крепления ее к корпусу двигателя. Во входной кромке 4 выполнен продольный канал 5, сообщающийся с каналом 6 подвода воздуха через закручивающее устройство 7 у верхнего торца 8 продольного канала 5. На верхнем торце 8 по центру продольного канала 5 выполнено отверстие 9, соединяющее продольный канал 5 с трактом двигателя. Диаметр этого отверстия 9 равен 0,6 ... 0,9 D, где D = 4F/P - гидравлический диаметр продольного канала, F и P - соответственно площадь и периметр поперечного сечения продольного канала 5. Поперечное сечение продольного канала может быть круглым. Рядом с нижним торцем 10 продольного канала 5 установлено раскручивающее устройство 11, выполненное, например в виде крестовины. В нижнем торце 10 выполнен проход-дроссель 12, соединяющий продольный канал 5 с трактом двигателя. Вместо дросселя 12 в стенке лопатки между раскручивающим устройством 11 и торцем 10 может быть выполнена перфорация 13. Длина продольного канала 5 равна не менее 9D. Проходная площадь закручивающего устройства 7 составляет примерно 0,1F.

Лопатка ГТД работает следующим образом: сжатый воздух, отобранный из-за компрессора двигателя, через канал подвода воздуха 6 и закручивающее устройство 7, выполненного, например, в виде тангенциального сопла, втекает в канал 5 в виде интенсивно закручивающего потока. Интенсивно закрученный поток перемещается вдоль периферии канала 5 в направлении торца 10 и теряет свою закрутку в процессе диссипативного воздействия вязкостных сил и потери импульса на генерацию турбулентности и когерентных вихревых структур. При этом радиальный градиент давления уменьшается, возрастает давление на оси канала, вызывая возникновение возвратного приосевого течения в виде вынужденного вихря. Таким образом в канале 5 формируются два закрученных вихревых потока - периферийный (у стенок канала) и приосевой (на оси канала), перемещающийся в противоположных направлениях. В процессе их газодинамического воздействия полная температура периферийного потока заметно возрастает за счет охлаждения приосевого потока. Приосевой поток пониженной температуры истекает из канала 5 через центральное отверстие 9 в тракт двигателя. Периферийный закрученный поток у стенки канала 5, имеющий повышенную полную температуру, перемещается к раскручивающемуся устройству 11, обогревая при этом кромку 4, и через дроссель 12 отводится в газовоздушный тракт ГТД. В зависимости от соотношения расходов периферийного подогретого и приосевого охлажденного потоков, как следует из литературы [3], эффекты подогрева воздуха у стенок продольного канала 5 могут достигать весьма существенных значений Tг = 50 ... 150 К. Закрутка потока и интенсивная турбулизация его обеспечивают у стенок продольного канала 5 достаточно большие значения среднего коэффициента теплоотдачи 800 Вт/м2К. В результате получается высокая плотность теплового потока q = (Tв* - Tст) от обогревающего воздуха в стенку. Здесь (Tв* = Tк* + Tг - температура периферийного потока воздуха, Tк* - температура воздуха за компрессором ГТД, откуда отбирается воздух для обогрева лопатки входного устройства.

Для оценки эффективности заявляемой лопатки был выполнен сравнительный расчет минимальной температуры стенки входной кромки двух лопаток с одинаковой геометрией наружного профиля пера и при равном расходе обогревающего воздуха через канал входной кромки. Материал лопаток 10Х18Н9ТЛ. Толщина стенки входной кромки лопатки 1,5 мм. У лопатоки 1 организована интенсивная закрутка обогревающего воздуха, как в заявляемой конструкции. У лопатки 2 в кромочном канале течение теплоносителя турбулентное его закрутки, как на прототипе. Основные параметры воздуха, обтекающего лопатки снаружи: коэффициент скорости = 0,2, давление Pо* = 0,1 МПа, температура Tо* = 243 К, угол атаки на лопатки i - 0o. Основные параметры закомпрессорного воздуха, обогревающего лопатки: температура Tк* = 410 К, давление Pк* = 0,4 МПа, расход обогревающего воздуха в лопатках G = 0,002 кг/с. Расчет выполнен по известным уравнениям [1,3 - 5] для плоской задачи теплопроводности при задании граничных условий 6-его рода.

Значения граничных условий 3-его рода ( и Tв*) со стороны теплоносителя и результаты расчета входной кромки для обоих лопаток представлены в таблице 1. (см. в конце описания).

Из результатов расчетов следует, что при равном расходе обогреваемого воздуха входная кромка лопатки заявляемой конструкции обогревается интенсивнее, т. к. ее температура на 15 К выше, что повышает надежность работы противообледенительной системы двигателя, а при необходимости дает возможным снизить расход обогреваемого воздуха и тем самым повысить общую мощность ГТД.

Источники информации 1. Тенищев Р.Х. и др. Противообледенительные системы летательных аппаратов. -М.: Машиностроение, 1967, с. 75, 74, 67.

2. Тенищев Р.Х. и др. Противообледенительные системы летательных аппаратов. -М.: Машиностроение, 1967, с. 75, рис. 3.27,а (прототип).

3. Суслов А.Д. и др. Вихревые аппараты. М.: Машиностроение, 1985, 254 с.

4. Михеев М.А., Михеева И.М. Основы теплопередачи. -М.: Энергия, 1973, 320 с.

5. Абкарян А.А. и др. Гидродинамика и теплообмен при течении закрученного потока воздуха в системе "вихревая камера - цилиндрический канал". -Межвуз. сб. Сер. Теплообмен и трение в двигателях и энергетических установках летательных аппаратов. - Казань, 1987, с. 4 - 8.

Формула изобретения

1. Лопатка входного устройства ГТД с верхним и нижним элементами крепления, во входной кромке пера которой выполнен продольный канал, сообщающийся с каналом подвода воздуха в верхней части лопатки и с проточной частью ГТД через отверстия в стенке лопатки на верхнем и нижнем торцах продольного канала, отличающаяся тем, что на выходе канала подвода воздуха установлено закручивающее устройство, а отверстие, выполненное в примыкающем к закручивающему устройству торце продольного канала, расположено по центру последнего.

2. Лопатка ГТД по п.1, отличающаяся тем, что продольный канал выполнен круглого сечения.

3. Лопатка ГТД по п.1, отличающаяся тем, что диаметр отверстия, расположенного по центру продольного канала, равен 0,6 - 0,9 от диаметра продольного канала.

4. Лопатка ГТД по пп.1 и 2, отличающаяся тем, что в продольном канале на противоположном от закручивающего устройства торце размещено раскручивающее устройство, например, в виде крестовины.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к области авиадвигателестроения, а именно: к устройствам подавления шума турбовентиляторных авиационных двигателей

Изобретение относится к области энергетики, к устройствам для подготовки атмосферного воздуха газотурбинной установки и может быть использовано в различных климатических зонах

Изобретение относится к воздухозаборным каналам двигателей летательных аппаратов

Изобретение относится к глушителям шума энергетических установок и может быть использовано в осевых компрессорах энергетических и приводных (газоперекачивающих) газотурбинных установок

Изобретение относится к области авиации, более конкретно к гондоле для турбореактивного двигателя

Изобретение относится к способу изготовления звукопоглощающей панели, в частности, для гондолы авиадвигателя, причем панель содержит по меньшей мере одну ячеистую сердцевину, которая с одной стороны покрыта воздухонепроницаемым наружным покрытием, тогда как покрытие с другой стороны, т.е
Наверх