Микрорезонаторный волоконно-оптический преобразователь физических величин

 

Микрорезонаторный волоконно-оптический преобразователь физических величин может быть использован для измерения температуры, давления, ускорения. Преобразователь содержит волоконно-оптический лазер, один торец световода которого сопряжен с коллиматором, формирующим параллельный пучок света на отражающую поверхность микрорезонатора. Второй торец световода, являющийся выходным, соединен с анализатором спектра через фотоприемник. Отражающая поверхность микрорезонатора расположена под некоторым заданным углом к оси коллимированного пучка света. Автоколебательный режим в системе волоконно-оптический лазер - микрорезонатор осуществляется за счет модуляции амплитуды коэффициента отражения оптического резонатора волоконно-оптического лазера или модуляции добротности двухзеркального оптического резонатора вследствие фотоиндуцированных угловых отклонений одного из зеркал, в качестве которого служит отражающая поверхность микрорезонатора. Обеспечена стабильность результатов измерений. 2 з.п.ф-лы, 3 ил.

Изобретение относится к волоконно-оптическим преобразователям физических величин (температуры, давления, ускорения и др.) с использованием микромеханических резонаторов, возбуждаемых светом.

Известны работы по созданию нового класса волоконно-оптических датчиков (ВОД) физических величин на основе использования микромеханического резонатора (МР) и оптического излучения, взаимодействующего с микрорезонатором МР. В литературе сообщается о разработках различных схем по оптическому возбуждению колебаний МР и их практической реализации. Во всех случаях модуляция интенсивности оптического излучения происходит на собственной резонансной частоте МР.

При поглощении МР оптического излучения его освещенная сторона испытывает температурное расширение, вследствие чего в МР возникает изгибный момент, изменяющийся в фазе с модулированным оптическим излучением, который приводит к механическим колебаниям на собственной резонансной частоте МР.

Внешнее воздействие (температура, давление, ускорение и др.) преобразуется во внутреннее механическое напряжение МР, что приводит к изменению его собственной резонансной частоты, определяемой размерами МР и его физическими свойствами.

В связи в малой амплитудой колебаний МР ( 0,1 мкм) в ВОД физических величин применяется интерферометрический метод съема информации о резонансной частоте МР с помощью интерферометра Фабри-Перо, резонатор которого образован отражающей поверхностью МР и полупрозрачным зеркалом, либо торцом световода, сопряжненным с отражающей поверхностью МР.

Непосредственная связь с цифровым устройством измерения без необходимости преобразования аналог - цифра, большая протяженность оптического канала передачи, высокая потенциальная точность измерений резонансной частоты делают этот тип датчиков перспективным.

Однако микрорезонаторные ВОД физических величин, основанные на фотометрическом возбуждении МР и оптическом детектировании колебаний, обладают следующим недостатком: положение рабочей точки А интерферометра Фабри-Перо нестабильно и ее смещение зависит одновременно как от дрейфа основных характеристики МР, так и от нестабильности источника излучения и параметров интерферометра Фабри-Перо.

Иными словами, на эффективность функционирования ВОД физических величин влияют одновременно нестабильность характеристики канала возбуждения МР и канала интерферометрического съема информации, что требует принятия специальных мер по стабилизации положения рабочей точки А.

Наиболее близким к предлагаемому техническому решению по технической сущности и достигаемому результату является волоконно-оптический датчик (ВОД) физических величин (заявка WO 89/00677, кл. G 01 D 5/26, 26.01.89), содержащий лазерный источник излучения, световод, делитель, коллиматор, микрорезонатор с отражающей поверхностью, фотоприемник и анализатор спектра.

Известное решение характеризуется следующими отрицательными признаками: высокие требования к стабильности мощности источника излучения (тока накачки лазерного диода) и тщательный контроль рабочей точки интерферометра Фабри-Перо за счет изменения в небольших пределах оптической мощности излучения, падающей на МР; дополнительные потери мощности оптического излучения, обусловленные наличием необходимых дискретных элементов, образующих дополнительный канал обратной связи в электронной схеме; жесткие требования к стабильности характеристик резонатора Фабри-Перо, а также - характеристики МР в силу ограниченной возможности их коррекции в рассматриваемой электронной схеме; ограниченные возможности подстройки рабочей точки интерферометра Фабри-Перо за счет изменения длины волны оптического излучения лазерного диода при реализации сложной электронной схемы обратной положительной связи.

Задача, решаемая данным изобретением, заключается в разработке микрорезонаторного волоконно-оптического преобразователя физических величин на основе волоконно-оптического лазера и модуляции добротности двухзеркального оптического резонатора вследствие фотоиндуцированных угловых отклонений одного из зеркал, в качестве которого служит МР.

При этом один торец одномодового световода волоконно-оптического лазера сопряжен с коллиматором, формирующим параллельный пучок света на отражающую поверхность МР, нормаль к которой составляет угол с осью падающего пучка, а второй торец является выходным.

Изменение мощности излучения при отражении от МР приводит вследствие эффекта фотоиндуцированной деформации к модуляции угла отклонения отраженного пучка (t), т.е. к модуляции мощности оптического излучения.

В качестве коллиматора используется градиентная стержневая линза (ГСЛ) в четверть периода, формирующая Гауссовы пучки.

Независимо от топологии и конструкции МР при выполнении определенных условий в рассматриваемом устройстве устанавливается автоколебательный режим с частотой F, практически совпадающей с резонансной частотой f F.

Эти условия сводятся к следующим: в исходном состоянии угол отклонения = и находится в интервале 1 и 2, границы которого (1,2) зависят от характеристик МР и волоконно-оптического лазера; резонансная частота МР близка к частоте релаксационных колебаний волоконно-оптического лазера fрел. или ее гармоник, т.е. f n fрел., где n = 1, 2, 3,..., n. Отметим, что fрел. определяется относительной накачкой m = Pн/Pн.п., где Pн.п.- пороговый уровень накачки лазера; средняя мощность излучения превышает определенный пороговый уровень зависящий от характеристик МР и волоконно-оптического лазера.

В результате возникновения в системе МР-волоконно-оптический лазер автоколебаний на резонансной частоте МР отпадает необходимость введения интерферометрической обратной связи по стабилизации положения точки автогенератора.

Сущность предлагаемого технического решения заключается в разработке микрорезонаторного волоконно-оптического преобразователя физических величин, в котором для возбуждения автоколебаний на резонансной частоте МР используется волоконно-оптический лазер без введения дополнительных волоконно-оптических устройств. При этом существование автоколебательного режима в системе МР - волоконно-оптический лазер осуществляется за счет модуляции амплитуды коэффициента отражения R оптического резонатора волоконно-оптического лазера, возникающей вследствие фотоиндуцированных угловых отклонений МР, нормаль к отражающей поверхности которого ориентирована под углом и к оптической оси коллимированного пучка света.

Волоконно-оптический лазер представляет собой отрезок одномодового активированного световода длиною l, накачка которого может осуществляться различными способами, например через отрезок буферного неактивированного световода, идеально согласованного с активированным световодом.

Уникальные свойства волоконно-оптического лазера, позволяющие обеспечить эффективное оптического согласование МР с волоконно-оптическим лазером, а также новейшая технология изготовления МР, основанная на методе анизотропного травления и плазмохимии монокристаллических материалов таких, как Si, SiO2, CaAs позволяют реализовать МР структуры с заданными акустическими и оптическими характеристиками и топологией (например, в виде микромембраны, микромостика, микроконсоли и т.д.), что позволяет реализовать в системе МР - волоконно-оптический лазер автоколебания, резонансная частота которых зависит от воздействия соответствующих внешних факторов: температуры, давления, ускорения и др.

Из вышеизложенного следует, что новые свойства системы МР - волоконно-оптический лазер дают основание рассматривать данную систему в качестве основы для разработки принципов построения частотных преобразователей физических величин различных конструкций.

Отметим, что при данном способе возбуждения автоколебаний для эффективного взаимодействия волоконно-оптического лазера с МР необходимо учитывать взаимосвязь параметров волоконно-оптической системы, геометрических размеров МР и относительную нестабильность резонансной частоты автогенератора.

Рассмотрим этот вопрос для микрорезонаторных преобразователей с базовой топологией: "микромостик на мембране" и "микромостик" для измерения давления и температуры соответственно.

Коэффициент преобразования для датчика давления P описывается формулой где L - длина микромостика; hs - толщина мостика; d - толщина мембраны; r - радиус мембраны; , E - коэффициент Пуассона и модуль Юнга для материала МР соответственно; H - расстояние между ГСЛ и МР.

Из (1) следует, что с ростом L коэффициент Kp резко возрастает, однако резонансная частота МР f0hs/L2 при этом существенно падает. Учитывая, что, например, при f0= 10 кГц измерение частоты сигнала с относительной погрешностью f/f0=10-4 требует, чтобы минимальное время регистрации сигнала min = 1 с, а при f/f0=10-5 необходимо min = 10 с, которое может оказаться недопустимо большим, с точки зрения обеспечения необходимого быстродействия датчика, следует принять, что резонансные частоты применяемых МР должны быть равными f0 59 кГц.

Так, при f0= 50 кГц получим следующие оптимальные, с точки зрения быстродействия и применяемого соотношения сигнал/шум размеры микрорезонаторной структуры: L = 900-1400 мкм, hs =5-7 мкм, r =900-1400 мкм. При этом коэффициент преобразования для микрорезонаторного датчика давления с размерами L = 1200 мкм, hs = 6 мкм, d =30 мкм, H = 30 мкм получим Kp = 400% атм-1.

Что касается датчика температуры, то его коэффициент преобразования Kт описывается выражением где - относительная продольная деформация микромостика; hs - толщина пленки (например, из никеля), наносимой на отражающую поверхность мостика.

Резонансная частота микромостика с пленкой металла плотностью Psi определяется выражением Аналогично датчику давления коэффициент преобразования температуры Kт, описываемый выражением (2), с ростом L резко возрастает, а резонансная частота согласно (3) при этом существенно падает. Для обеспечения заданного быстродействия и применяемого соотношения сигнал/шум размеры микрорезонаторной структуры были выбраны следующими: 1400 х 300 х 6 мкм. Резонансная частота основной моды при этом составила f56,3 кГц при T20oC. В диапазоне температур 10-70oC система все время находилась в режиме стабильных автоколебаний ( - коэффициент).

При выбранных параметрах микрорезонаторной структуры при нестабильности частота автогенератора f/f = 210-4, имеем Kт=-0,08% K-1. По результатам экспериментальных исследований погрешность измерения температуры при комнатной температуре составляет На фиг. 1 представлена схема микрорезонаторного волоконно-оптического преобразователя физических величин, позволяющая контролировать резонансные частоты основных мод акустических автоколебаний, величина которых зависит от топологии и конструкции МР, а также - характеристик волоконно-оптического лазера и коллиматора. Здесь 1 - волоконно-оптический лазер (ВОЛ), 2 - МР, 3 - коллиматор К, 4 - одномодовый изотропный световод, 5 - полупрозрачное зеркало М1, в качестве которого служит граница раздела световод - воздух с коэффициентом отражения R1=3,2%, 6 - фотоприемник, 7 - анализатор спектра, 8 - полупроводниковый лазер накачки на длине волны = 0,98 мкм, 9 - внешнее воздействие (давление P, температура T и т.п.).

Устройство работает следующим образом. В результате воздействия измеряемой физической величины независимо от типа и параметров МР в системе устанавливается автоколебательный режим с частотой колебаний F, совпадающей с резонансной частотой i-ой моды клебаний МР: fi=F, где i = 1, 2,..., m. При этом автоколебательный режим в системе МР-волоконно-оптический лазер осуществляется за счет модуляции амплитуды коэффициента отражения R оптического резонатора волоконно-оптического лазера вследствие фотоиндуцированных угловых отклоненний зеркала, в качестве которого используется МР.

На фиг. 2(а) представлена топология МР "микромостик на мембране" микрорезонаторного волоконно-оптического преобразователя давления. Здесь позиция 1 - вид сверху МР в виде микромостика на мембране, позиция II - вид сбоку в разрезе А-А того же микрорезонатора.

На фиг. 2(а) изображены: 3 - коллиматор, 10 - микромостик толщиною hs, 11 - мембрана толщиною d, 12 - расстояние H между ГСЛ и МР, R - радиус мембраны, L - длина микромостика.

Принцип действия волоконно-оптического преобразователя давления с МР, выполненным в виде микромостика на мембране и ориентированым под углом и к оптической оси коллиматора 3, основан на том, что давление P вызывает деформацию мембраны, на которой расположен микромостик 10. Вследствие этой деформации в микромостике возникают растягивающие (или сжимающие) напряжения, приводящие к изменению резонансной частоты микромостика.

Высокий коэффициент преобразования Kp подтверждается экспериментальными данными зависимости частоты автоколебаний F от давления для МР с параметрами: L = 1650 мкм, hs = 6 мкм, d = 130 мкм, r = 1900 мкм, H = 200 мкм.

Отметим, что в данном случае микромостик и мембрана были изготовлены из разнородных материалов: микромостик - из кремния, мембрана - из стекла. По экспериментальным данным Kp = 20% атм-1, что удовлетворительно согласуется с оценкой Kp, полученной по формуле (1) и равной Kp = 16% атм-1.

Принцип действия волоконно-оптического преобразователя давления с МР, выполненным в виде микромостика на мембране, остается тем же самым и в том случае, если в качестве МР использовать микромостик на мембране, выполненным из однородного материала, например из монокристаллического кремния методом анизотропного травления.

При заданном значении давления флуктуация частоты автогенератора составляла (F/F)фл = 2 10-4, что соответствует среднеквадратической ошибке измерений давления
Таким образом, исходя из экспериментальных данных можно утверждать, что погрешность измерения давления в окрестности P 1 атм составляет P = 110-3 атм.

На фиг. 2(б) представлена топология МР "микромостик" микрорезонаторного волоконно-оптического преобразователя температуры. Здесь позиция 1 - вид сверху МР в виде микромостика, позиция II - вид сбоку МР в разрезе А-А того же микрорезонатора. На фиг. 2(б) изображены: 3 - коллиматор, 10 - микромостик толщиною hs, 12 - H расстояние между ГСЛ и МР.

Принцип действия волоконно-оптического преобразователя температуры с МР, выполненным в виде "микромостика" и ориентированным под углом и к оптической оси коллиматора 3, основан на том, что температура Т вызывает деформацию микромостика, вследствие чего в микромостике возникают растягивающие (или сжимающие) напряжения, приводящие к изменению резонансной частоты микромостика.

На фиг. 3 (а, б) представлены экспериментально полученные зависимость частоты автоколебаний от давления F(P) и зависимость частоты автоколебаний от температуры F(T) (а и б соответственно). Экспериментальная зависимость частоты автоколебаний от температуры микромостика Т измерялась с помощью элемента Пельтье в диапазоне температур 10-70oC. Микрорезонатор с пленкой из Ni имел размеры 1400 х 300 х 6 мкм. Резонансная частота основной моды при комнатной температуре была равна F 56 кГц. При вариации температуры в данном интервале значений система все время находилась в режиме стабильных автоколебаний. Функция F(T) является практически линейной с температурным коэффициентом

При постоянной температуре МР кратковременная нестабильность частоты автогенератора составила (F/F)фл= 210-4. Следовательно, погрешность такого преобразователя температуры равна

что в процентном выражении соответствует 0,3% в измеряемом диапазоне температур.

Отметим, что экспериментальное значение температурного коэффициента удовлетворительно согласуется с расчетным, вычисленным по формуле (2). Кроме того, следует подчеркнуть, что согласно (2) Kт существенно зависит от наличия остаточных внутренних деформаций микромостика, учитывая, что = 0+т, где 0 - слагаемое, характеризующее исходные внутренние деформации микрорезонаторных структур, возникающие при изготовлении МР, т - термодеформация. Следовательно, технологическая обработка миикрорезонаторной структуры, изменяющая 0, позволяет управлять коэффициентом преобразования Кт, т.е. эффект наличия остаточных деформаций 0 может иметь решающее значение при определении Кт.

Таким образом, за счет напыления на микромостик соответствующего материала необходимой толщины можно формировать температурно-чувствительные микрорезонаторные структуры в соответствии с заданным диапазоном измеряемых температур.


Формула изобретения

1. Микрорезонаторный волоконно-оптический преобразователь физических величин, включающий лазерный источник оптического излучения со световодом, микрорезонатор, фотоприемник и анализатор спектра, при этом один торец световода сопряжен с коллиматором, расположенным между этим торцом и микрорезонатором, а второй торец световода является выходным и связан с анализатором спектра через фотоприемник, отличающийся тем, что лазерный источник оптического излучения выполнен в виде волоконно-оптического лазера, при этом отражающая поверхность микрорезонатора образует с выходным торцом световода двухзеркальный оптический резонатор волоконно-оптического лазера, а отражающая поверхность микрорезонатора в исходном положении ориентирована к оптической оси коллимированного луча под некоторым заданным углом и.
2. Микрорезонаторный волоконно-оптический преобразователь физических величин по п.1, отличающийся тем, что микрорезонатор выполнен в виде микромостика на мембране.

3. Микрорезонаторный волоконно-оптический преобразователь физических величин по п.1, отличающийся тем, что микрорезонатор выполнен в виде микромостика.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к области гидроакустики и может быть использовано в лабораторных и натурных условиях для измерения параметров звуковых волн в жидкости

Изобретение относится к медицине и найдет применение в лечебной практике для улучшения воздействия лазерного луча на биологически активные точки организма больного

Изобретение относится к оптическим приборам наблюдения и может быть использовано в тех случаях, когда входная часть наблюдательного прибора расположена на значительном удалении от наблюдателя, например для наблюдения из кабины вертолета пространства под кабиной вертолета

Изобретение относится к устройствам волоконной оптики и может быть использовано для соединения световода с другим световодом либо с оптоэлектронным элементом, например с градиентной линзой

Изобретение относится к волоконно-оптической связи и может быть использовано для соединения сохраняющих поляризацию оптических волокон с заданной точностью за кратчайшее время при обеспечении долговечности соединяемых частей за счет отсутствия механической подстройки положения последних в собранном разъеме

Изобретение относится к контрольноизмерительной технике и может быть использовано при поверке высокоскоростных измерительных приборов пикосекундного диапазона в качестве образцового генератора

Изобретение относится к аппаратам для определения повреждения на судне, например, корпусе судна, содержащим распределенную систему оптических волокон, расположенных вблизи корпуса судна, причем указанные оптические волокна присоединены к центральному блоку, приспособленному для определения характеристик оптических волокон на режиме пропускания света для определения повреждения корпуса судна

Изобретение относится к волоконно-оптическим преобразователям физических величин (температуры, давления, ускорения и др.) с использованием микромеханических резонаторов, возбуждаемых светом

Изобретение относится к волоконно-оптическим автоколебательным системам на основе микрорезонатора и может быть использовано в системах измерения различных физических величин (температуры, давления, ускорения - Т, Р, g и др.)

Изобретение относится к волоконно-оптическим автоколебательным системам на основе микрорезонаторов и может быть использовано в устройствах для измерения различных физических величин, например, температуры, давления, ускорения и др

Изобретение относится к области приборостроения и может быть использовано для измерения давления и определения значений параметров акустических полей в газах и жидкостях
Наверх