Способ очистки теплоносителя контура охлаждения ядерного реактора

 

Изобретение относится к области ядерной энергетики, касается, в частности, способов удаления радиоактивных продуктов из теплоносителя и может быть использовано при решении вопросов обеспечения ядерной безопасности реакторов типа РБМК. Сущность изобретения состоит в том, что в способе очистки теплоносителя контура охлаждения ядерного реактора путем отбора части теплоносителя, очистки и возврата его в контур предложено отбор теплоносителя производить поочередно из тупиковых зон группы раздаточных коллекторов. При работе реактора на мощности система очистки контура охлаждения используется для исключения накопления продуктов коррозии в РГК и поддержания необходимого водно-химического режима в контуре охлаждения. Включение системы в работу на остановленном реакторе позволяет удалить из РГК продукты коррозии и тем самым существенно снизить мощность -излучения в помещении водяных коммуникаций и снизить дозаторы при ремонте оборудования. 1 ил.

Изобретение относится к области ядерной энергетики, касается в частности способов удаления радиоактивных продуктов из теплоносителя и может быть использована при решении вопросов обеспечения ядерной безопасности реакторов типа РБМК.

Для отвода тепла от тепловыделяющих сборок (ТВС) в технологические каналы реактора подается теплоноситель посредством контура охлаждения. Опыт эксплуатации энергоблоков АЭС показал, что в тупиковых зонах раздаточно - групповых коллекторов (РГК) контура охлаждения происходит накапливание радиоактивных примесей и шлаковых отложений. Это является причиной повышения уровня радиационного фона в помещениях напорных коллекторов (НК) и РГК, затрудняющего проведение ремонтных работ. Кроме того, замечен повышенный выход из строя ТВС в тех каналах реактора, коммуникации которых запитаны в районе тупиковых зон РГК [1].

Наиболее близким аналогом данного изобретения является способ очистки теплоносителя путем отбора части теплоносителя из напорного коллектора главных циркуляционных насосав [ГЦН] [2]. Способ заключается в том, что при работе реактора на мощности часть теплоносителя отбирают на байпасную очистку из напорного коллектора ГЦН, а после очистки теплоноситель возвращают в контур. В связи со значительным загрязнением тупиковых зон РГК желательно отбирать теплоноситель на очистку непосредственно из тупиковых зон РГК, как наиболее зашлакованных. Однако, одновременный отбор теплоносителя из тупиковых зон всех РГК требует увеличения пропускной способности установки очистки с 200 м3/час до 2000 м3/час, что связано с экономически неоправданными затратами.

Недостатками наиболее близкого аналога являются: - повышенный выход из строя ТВС, каналы которых подключены к тупиковым зонам РГК, - накопления радиоактивного шлама и механических примесей, - повышенный радиационный фон в помещениях РГК, осложняющий обслуживание и ремонт оборудования.

Задача, решаемая изобретением, заключается в снижении выхода из строя ТВС по причине негерметичности, ограничении накопления радиоактивных отложений, уменьшении вероятности попадания механических загрязнений в ЗРК и ТВС, снижении радиационного фона в помещениях РГК.

Сущность заявляемого технического решения состоит в том, что в способе очистки теплоносителя контура охлаждения ядерного реактора, путем отбора части теплоносителя, очистки и возврата его в контур, предложено отбор теплоносителя производить поочередно из тупиковых зон групп раздаточных коллекторов.

Данное решение позволяет производить эффективную очистку тупиковых зон РГК как при работе реактора на мощности, так и в период ремонтов, что существенно снизит мощность дозы - излучения в помещении водяных коммуникаций и значительно снизит выход из строя ТВС, коммуникации которых запитаны от тупиковых зон РГК. Использование предложенного способа очистки РГК вместо отбора теплоносителя из напорного коллектора ГЦН в процессе осуществления способа позволит обеспечить очистку тупиковых зон РГК при сохранении общего расхода. Выбор групп РГК может быть осуществлен и на основе контроля расхода теплоносителя в технологических каналах реактора, либо по показаниям датчиков радиоактивности КГО, т.к. накопление радиоактивных частиц в значительной степени обусловлено удержанием радиоактивных частиц в тупиковых зонах РГК. Возможен и иной порядок выбора групп раздаточно-групповых коллекторов для очистки и замены их на другую группу.

Предлагаемый способ проиллюстрирован графическим материалом. На чертеже представлена принципиальная схема очистки теплоносителя. Где 1 - фрагмент раздаточно - группового коллектора, 2 - напорный коллектор главного циркуляционного насоса, 3 - барабан - сепаратор, 4 - запорно - регулирующий клапан (ЗРК), 5 - шариковый датчик расхода (ШАДР), 6 - расходомерная шайба, 7 - запорная арматура, 8 - расходомерная шайба, 9 - запорно-регулирующая арматура, 10 - сборный коллектор РГК.

Способ очистки теплоносителя осуществляется следующим образом. При пуске блока отбор теплоносителя на очистку производят из напорного коллектора 2 ГЦН, все ЗРК 4 системы очистки тупиковых зон РГК 1 - закрыты. После выхода блока на номинальные параметры прекращают отбор теплоносителя из НК 2 ГЦН, производят отбор теплоносителя из тупиковых зон РГК 1. Выбор начальной группы раздаточных коллекторов может быть сделан произвольно или с учетом показаний датчиков расхода или радиоактивности. Переход на систему очистки контура охлаждения путем отбора части теплоносителя из тупиковых зон группы РГК 1 осуществляют путем постепенного прикрытия (до полного закрытия) запорно-регулирующей арматуры 9 на забор теплоносителя из НК 2 ГЦН и приоткрытия (до полного открытия) ЗРК 4 на трубопроводах забора теплоносителя из группы РГК 1. Далее, теплоноситель поступает на байпасную очистку. Максимальный расход на байпасную очистку из тупиковых зон РГК 1, определяется производительностью байпасной очистки контура охлаждения, которая составляет 200 т/час. Радиоактивность теплоносителя группы РГК 1 определяют датчиком установленным в системе контроля герметичности оболочек ТВЭЛ (КГО) (датчик на фиг. не показан).

При отклонении контролируемого параметра (расход, радиоактивность) от допустимого значения в другой группе РГК переходят на очистку этой группы РГК 1 путем постепенного закрытия ЗРК 4 на трубопроводах забора теплоносителя очищенной группы РГК 1 и параллельного открытия ЗРК 4 на трубопроводах забора теплоносителя группы ЗРК 1 подлежащих очистке. Таким образом, периодически группами производят очистку всех РГК 1 на каждой половине контура охлаждения.

При работе реактора на мощности данная система очистки контура охлаждения используется для исключения накопления продуктов коррозии в РГК и поддержания необходимого водно - химического режима в контуре охлаждения. Включение системы в работу на остановленном реакторе позволяет удалить из РГК продукты коррозии и тем самым существенно снизить мощность - излучения в помещении водяных коммуникаций и снизить затраты при ремонте оборудования.

Формула изобретения

Способ очистки теплоносителя контура охлаждения ядерного реактора путем отбора части теплоносителя, очистки и возврата его в контур, отличающийся тем, что отбор теплоносителя производят поочередно из тупиковых зон групп раздаточных коллекторов.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к переработке ОЯТ АЭС и представляет собой способ экстракционной переработки облученного ядерного топлива АЭС с использованием трибутилфосфата в разбавителе

Изобретение относится к обезвреживанию органических отходов, содержащих радионуклиды, и может найти применение на предприятиях ядерного цикла

Изобретение относится к ядерной энергетике и может быть использовано при снятии с эксплуатации реакторов на быстрых нейтронах

Изобретение относится к области химической технологии, конкретно к атомной экологии и может быть использовано при переработке жидких радиоактивных отходов (ЖРО), образующихся при эксплуатации различных атомно-энергетических установок (АЭУ) на АЭС, транспортных средствах (атомных ледоколов, подводных лодок, плавучих АЭС)

Изобретение относится к области переработки жидких радиоактивных отходов, образующихся при регенерации облученного ядерного топлива (ОЯТ) и может быть использовано в радиохимической промышленности

Изобретение относится к области обработки жидких радиоактивных отходов, образующих при регенерации облученного ядерного топлива, а именно к способам подготовки жидких радиоактивных отходов к утилизации

Изобретение относится к охране окружающей среде, а точнее к очистке и концентрированию жидких радиоактивных отходов (ЖРО)

Изобретение относится к ядерной технологии, а именно к удалению из контура ядерного реактора потенциально опасных веществ
Изобретение относится к технологии переработки жидких радиоактивных отходов (ЖРО) методами концентрирования, сорбционной доочистки и цементирования

Изобретение относится к области теплоэнергетики, а именно к технологии энергетических установок (АЭС и ТЭЦ) с водным теплоносителем, и может быть использовано в технологии поддержания их водно-химического режима

Изобретение относится к области получения воды высокой чистоты для теплоносителей ядерных энергетических установок

Изобретение относится к очистке жидких радиоактивных отходов и может быть использовано на радиохимических предприятиях

Изобретение относится к способу выпаривания и отверждения солесодержащих растворов, в частности содержащих бораты и сульфаты растворов, в замкнутых сосудах под действием нагревания с помощью микроволн, при этом подлежащий испарению солевой раствор подают в сосуд непрерывно или порциями, испаряют жидкость и затем подают предпочтительно в сосуд для конденсата

Изобретение относится к обработке и утилизации сточных вод, образующихся при дезактивации оборудования атомных силовых установок надводных и подводных судов, оборудования атомных электрических и тепловых станций, научно-исследовательских реакторов, изотопных приборов при их ремонте или утилизации

Изобретение относится к установкам, предназначенным для безреагентного микробного обеззараживания жидких радиоактивных стоков
Наверх