Способ производства анизотропной электротехнической стали

 

Способ производства анизотропной стали относится к металлургии. Способ включает выплавку, горячую прокатку, обезуглероживание, двукратную холодную прокатку, замедленный нагрев в интервале первичной рекристаллизации и заключительный высокотемпературный отжиг. Для высоких магнитных свойств и стабилизации вторичной рекристаллизации стали температуру нагрева под горячую прокату (TH) устанавливают в зависимости от содержания Аl в стали по соотношению TH = 1190+410% Al103С. Смотку осуществляют при 520-570°С. Замедленный нагрев проводят после заключительной холодной прокатки со скоростью 5-15°С/ч в интервале температур 400-700°С с возможностью обезуглероживания на стадии выплавки или термообработки подката в исходной, промежуточной или конечной толщине с возможностью добавки в сталь 0,4-0,7% Cu. 2 з.п.ф-лы, 2 табл.

Изобретение относится к черной металлургии, в частности к производству тонколистовой электротехнической стали. По условиям эксплуатации в трансформаторе от этой стали требуются высокая магнитная индукция и низкие потери мощности при перемагничивании (удельные потери). Необходимым условием получения требуемого уровня магнитных свойств является наличие в стали совершенной ребровой текстуры, формирующейся в процессе медленного нагрева при высокотемпературном отжиге (ВТО) в условиях, когда нормальный рост зерен тормозится т. н. ингибиторной фазой. Роль ингибиторной фазы могут играть дисперсные частицы AlN, MnS, BN и др.

В зависимости от типа фазы различаются и технологические схемы производства стали. Так, для стали с сульфидным ингибированием отличительной особенностью технологии является высокотемпературный (> 1400oC) нагрев слябов перед горячей прокаткой с целью растворения MnS и последующего его выделения в виде дисперсных частиц [1]. Указанная операция крайне нетехнологична, требует специального оборудования и ведет к повышенному расходу металла.

Стали с нитридным ингибированием в этом отношении являются более предпочтительными, так как не требуют высоких температур нагрева перед горячей прокаткой [2] . Однако при наличии только одного ингибитора (например AlN) эти стали обнаруживают нестабильность вторичной рекристаллизации и, как следствие этого, значительный разброс магнитных свойств между отдельными плавками и пониженный выход высших сортов стали. Было обнаружено, что дефицит ингибиторной фазы в таких сталях не позволяет получить при первичной рекристаллизации достаточного количества текстуры {111} <112>, необходимой для успешного роста ребровых зерен в процессе последующей вторичной рекристаллизации. Между тем, известно, что эффективным ингибитором, усиливающим ориентировки { 554} <225> и {110} <001> в текстуре первичной рекристаллизации, является медь. Добавку меди в количестве 0,24 - 0,75% в сталь с сульфидным ингибированием рекомендует патент [3].

Однако, как показали эксперименты, на сталях с нитридным ингибированием (с повышенным содержанием Al и низким - S), обрабатываемых по обычной технологии, с обезуглероживающим отжигом (OO) в конечной толщине, влияние Cu на текстуру и магнитные свойства не проявилось. В низкоуглеродистой стали улучшение текстуры под действием меди наблюдается только при медленном нагреве или выдержке в интервале первичной рекристаллизации [4], причем наибольшее развитие благоприятной ориентировки {111} <112> (или {554} <225>) соответствует выделению частиц размером 20-30 мм при плотности 3 1014 см-3.

Замедление нагрева при первичной рекристаллизации предложено в способе [5] (патент-прототип), в соответствии с которым электротехническая сталь с добавками Se или S перед обезуглероживающим отжигом (OO) нагревается в течение 0,5-10 мин при 600-650oC. Однако как показали эксперименты, на стали с AlN в качестве ингибитора использование только одного этого приема не дает возможность улучшить магнитные свойства.

В настоящем изобретении поставленная цель - получение высоких магнитных свойств и стабильной вторичной рекристаллизации за счет усиления ориентировки {111} <112> в стали с нитридным ингибированием (без меди или с добавкой 0,3-0,7% Cu) достигается за счет изменения технологических параметров всего передела. Для получения достаточного количества фазообразующих примесей - Al и N в твердом растворе - температура нагрева слябов перед горячей прокаткой Тн устанавливается в зависимости от содержания Al: Тн=1190+4103 %Al (oC), а температура смотки после горячей прокатки снижается до 520-570oC. Выделение дисперсных нитридов, ответственных за формирование текстуры {111} <112>, осуществляется до начала первичной рекристаллизации, в процессе медленного (5-15o/ч) нагрева в интервале 400-700oC холоднокатаного металла конечной толщины при ВТО. Обезуглероживание проводится путем вакуумирования жидкой стали, либо при термообработке подката в исходной, промежуточной или конечной толщине (после старения).

Таким образом, отличительными признаками предлагаемого технического решения являются: 1. Регламентированная температура нагрева слябов перед горячей прокаткой, зависящая от содержания алюминия в стали.

2. Низкая температура смотки (520-570oC).

3. Медленный (5-15o/ч) нагрев холоднодеформированного металла в интервале 400-700oC в процессе ВТО для выделения дисперсных AlN перед первичной рекристаллизацией.

4. Обезуглероживание стали в жидком состоянии либо в подкате исходной, промежуточной или конечной толщины.

5. Добавка в сталь 0,4-0,7% Cu.

Изобретение распространяется на стали с 2,8-3,5% Si; 0,030-0,045% C; 0,10-0,30% Mn; 0,003-0,020% S; 0,008-0,028% Al; 0,03-0,7% Cu. Две плавки указанного состава были выбраны для проверки предлагаемого способа (см. таб. 1).

Непрерывнолитые слябы нагревали до температуры Тн, выбранной в зависимости от содержания Al, и прокатывали на полосы толщиной 2,5 мм с температурой смотки в интервале 520-570oC. Опробовали различные способы обезуглероживания: в жидком состоянии, в подкате исходной и промежуточной толщины. Обе стали прокатывали на толщину 0,30 мм с промежуточным отжигом. Выделение дисперсных частиц AlN - регуляторов текстурообразования - осуществлялось в процессе медленного (5-15o/ч) нагрева холоднокатаной стали конечной толщины при ВТО. Параметры обработки и полученные магнитные свойства приведены ниже в таблице 2. Для сравнения выбранные стали обрабатывали по способу-прототипу (без регламентации режимов горячей прокатки и смотки, с замедлением нагрева в процессе OO в конечной толщине), а также по режимам, несколько отличающимся от режимов предлагаемого способа. Как видно из таблицы, в сталях обеих плавок стабильно высокий уровень магнитных свойств достигается только при сочетании заданных режимов горячей прокатки и нагрева при первичной рекристаллизации. Отклонение одного из указанных параметров ведет к ухудшению качества стали. Массовое опробование изобретения в промышленных условиях подтвердило его высокую эффективность.

Формула изобретения

1. Способ производства анизотропной электротехнической стали, содержащей 0,008 - 0,028% Al с высокой магнитной индукцией и низкими удельными потерями, включающий выплавку, горячую прокатку, обезуглероживание, двухкратную холодную прокатку, высокотемпературный отжиг с замедленным нагревом в интервале первичной рекристаллизации, отличающийся тем, что температуру нагрева под горячую прокатку устанавливают в зависимости от содержания Al в стали по соотношению Tн = 1190 + 4 х 103% Al 10oС, после горячей прокатки осуществляют смотку при 520 - 570oС, а замедленный нагрев проводят после заключительной холодной прокатки со скоростью 5 - 15o с/ч в интервале температур 400 - 700oС.

2. Способ по любому из пп.1 и 2, отличающийся тем, что обезуглероживание проводят на стадии выплавки или на стадии прокатки в исходной, промежуточной или конечной толщине.

3. Способ по любому из пп.1 - 3, отличающийся тем, что в сталь добавляют 0,4 - 0,7% Cu.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к получению холоднокатаной полуобработанной электротехнической стали с улучшенными электромагнитными свойствами

Изобретение относится к способу производства неориентированного электротехнического стального листа с высоким сцеплением слоя изолирующего покрытия, который используют при изготовлении в стальных сердечниках для электрических машин: электродвигателей, электрогенераторов, небольших трансформаторов и

Изобретение относится к металлургии, конкретно к производству изотропной электротехнической стали, применяемой для изготовления магнитопроводов электродвигателей

Изобретение относится к черной металлургии, конкретно к способам получения холоднокатаной электротехнической изотропной стали

Изобретение относится к способу изготовления электротехнической стали с ориентированной структурой с окончательной толщиной полосы в диапазоне от 0,1 до 0,5 мм из плоских заготовок с регламентированным составом сплава
Изобретение относится к металлургии, в частности к прокатному производству, и может быть использовано для производства анизотропной электротехнической стали средней степени легирования в рулонах
Изобретение относится к области металлургии, в частности к производству электротехнической холоднокатаной трансформаторной стали

Изобретение относится к металлургии, конкретно к производству анизотропной электротехнической стали, применяемой для изготовления магнитопроводов электрической аппаратуры

Изобретение относится к производству текстурованных электросталей, а именно к получению доменной структуры сталей

Изобретение относится к области металлургии, в частности к получению магнитострикционного материала, обладающего лучшими характеристиками по сравнению с альфарами

Изобретение относится к способу изготовления электротехнической листовой стали, в частности с ориентированной зернистой структурой, с равномерной хорошо пристающей стеклянной пленкой и с улучшенными магнитными свойствами, при котором предварительно изготовленную и в случае необходимости отожженную горячую ленту за один или несколько проходов подвергают холодной прокатке до конечной толщины, а затем на прокатанную до конечной толщины ленту наносят и высушивают отжигательный сепаратор, после чего холодную ленту с нанесенным слоем подвергают высокотемпературному отжигу, прием существенной составной частью отжигательного сепаратора является водная дисперсия окиси магния (MgO), а отжигательный сепаратор содержит дополнительно по меньшей мере одну присадку

Изобретение относится к черной металлургии и может быть использовано при производстве текстурированных электротехнических сталей

Изобретение относится к черной металлургии и может быть использовано при производстве текстурированных электротехнических сталей

Изобретение относится к высокопрочной стали, используемой в строительстве и для изготовления труб, и к производству этой стали

Изобретение относится к черной металлургии, в частности к получению изотропной электротехнической стали в рулонах толщиной 0,50 мм, применяемой для изготовления магнитопроводов электрических машин

Изобретение относится к металлургии, конкретно к производству электротехнической стали, применяемой для изготовления магнитопроводов электродвигателей

Изобретение относится к металлургии, конкретно к производству анизотропной электротехнической стали, применяемой для изготовления магнитопроводов электрической аппаратуры

Изобретение относится к металлургии, конкретно к производству электротехнических сталей, в частности к способу нагрева непрерывно-литых слябов трансформаторной стали

Изобретение относится к черной металлургии, в частности к производству холоднокатаной электротехнической изотропной стали

Изобретение относится к области металлургии, в частности к получению холоднокатаной изотропной электротехнической стали, применяемой для изготовления вращающихся электротехнических машин
Наверх