Способ получения термоэластопластичного материала

 

Изобретение может быть использовано в автомобильной, строительной и других отраслях промышленности. Смешивают каучук и пластик в массовом соотношении 90: 10-50: 50 при температуре плавления пластика. Вводят вулканизующий агент перекисного типа 0,1-1,0 мас.ч. на 100 мас.ч. каучука. Соотношение вулканизующего агента и высокомолекулярного соединения от 1:1 до 1:10. Высокомолекулярное соединение используют в виде водного раствора и предварительно обрабатывают им вулканизующий агент. Затем последний обрабатывают водным раствором неорганической кислоты до pН 3-4. Отделяют и высушивают. Технический результат-повышение комплекса физико-механических свойств ТЭП. 1 табл.

Предлагаемое техническое решение относится к области получения термоэластопластичных материалов (ТЭП) на основе смеси пластика, каучука и вулканизующего агента и может быть использовано для производства изделий, применяемых в автомобильной, строительной и других отраслях промышленности.

В последнее время наблюдается тенденция в предпочтении способов получения ТЭП методом смешения каучука и пластика, а не прямым синтезом материала, сочетающего в своем строении жесткие и мягкие блоки, что объясняется в первую очередь более низкой (приблизительно в 2 раза) стоимостью ТЭП, получаемых смешением (Обзор ЦНИИТЭНЕФТЕХИМ, М., 1996, с.310-382).

Известен способ получения ТЭП смешением на вальцах или в закрытом резиносмесителе нитрильного каучука и поливинилхлорида (пат.США 2330353, опубл. 28.09.44).

Данный материал является одним из первых полученных смесевых ТЭП и характеризуется простотой процесса получения и хорошей воспроизводимостью.

Недостатком данного способа является низкая прочность на разрыв - 5 МПа и низкая термостойкость получаемого материала (не более 130oC).

Известен способ получения ТЭП смешением полипропилена и этиленпропиленового каучука, способного к термовулканизации, на смесительном оборудовании при температуре плавления пластика (Пат.США 3835201, C 08 F 37/18, опубл. 10.09.74).

Получаемые данным способом ТЭП, хотя и обладают рядом ценных свойств: агрессивостойкостью, хорошим сопротивлением к истиранию, однако характеризуются невысоким относительным удлинением на разрыв - 200%, а также падением прочности материала (на 50% уже через 3-ое суток) при эксплуатации материала при температурах 140-150oC.

Известен способ получения ТЭП смешением полипропилена, бутилкаучука и вулканизующего агента - фенольной смолы (пат.США 3037954, 260-298, опубл. 05.06.62). Смешение каучука и пластика проводится в смесительном оборудовании при температуре плавления пластика с последующей подачей при перемешивании вулканизующего агента в количестве 8-10 мас.ч. Процесс сшивания каучука, проходящий в процессе перемешивания каучука и пластика, был назван в указанном патенте динамическим отверждением (вулканизацией). Получаемые таким способом ТЭП характеризуются хорошими эластическими свойствами - относительное удлинение при разрыве составляет 400-450% и хорошими электрическими свойствами. Однако существенным недостатком способа является то, что получаемые материалы имеют слишком высокое остаточное удлинение после растяжения (на 200%) - 72-125%, что приближает полученные ТЭП по свойствам к классу пластиков и значительно ограничивает их использование вместо резин.

Наиболее близким аналогом предлагаемого способа по технической сущности является способ получения ТЭП смешением 10-50 мас.ч. пластика или смеси пластиков, 50-90 мас.ч. каучука полиолефинового типа и вулканизующего агента (заявка Японии N 55-161888, C 08 L 23/00, опубл.25.05.82). Хитачи Денсен К. К. В качестве пластиков используются полиолефины, сополимер винилацетата с этиленом (сэвилен) или их смесь.

Смешение проводится при температуре 170oC в течение 15-25 мин, после чего вводят вулканизующий агент перекисного типа (например, перекись дикумила, пероксимон и др.) в количестве 0,1- 0,6 мас.ч. на 100 мас.ч. каучука. Одновременно с введением вулканизующего агента возможно добавление компонентов, способствующих сшивке каучука (триаллилизоцианурат, триэтилентетрамин, окись Zn и др. ) в количестве 0,2-6,9 мас.ч. на 100 мас.ч. каучука. Перед введением вулканизующего агента возможно добавление в перемешиваемую смесь каучука, содержащего полярные группы (-COOH, -OH, -аминогруппы) в количестве 5-10 мас.ч. Полученные материалы обладают хорошей перерабатываемостью, гладкой поверхностью, высоким относительным удлинением при разрыве 350-400% при прочности 6,4 МПа.

Однако такие свойства достигаются лишь при проведении процесса в небольших объемах. При увеличении объема используемого оборудования физико-механические показатели получаемых ТЭП резко ухудшаются (см.пример (контрольный) 13, 14). Кроме того, способ характеризуется повышенной взрывоопасностью из-за использования при высоких температурах перекисных вулканизующих агентов.

Вышеуказанные недостатки значительно затрудняют использование данного способа в промышленных масштабах.

Целью предлагаемого технического решения является разработка способа, позволяющего получать ТЭП с высоким комплексом физико-механических свойств независимо от объемов используемого оборудования, и уменьшение пожаровзрывоопасности процесса.

Поставленная цель достигается тем, что вулканизующий агент предварительно до смешения с каучуком и пластиком обрабатывается сначала водным раствором высокомолекулярного соединения (ВМС) общей формулы: где a = 50-200, b = 130-260, c = 40-160, Me = Na+, K+ при соотношении вулканизующий агент : ВМС от 1 : 1 до 1 : 10, затем водным раствором неорганической кислоты до pH среды 3-4, после чего отделяется от водной фазы и подвергается осушке.

Сущность предлагаемого способа заключается в следующем. В смесителе, например, типа Бембери или Брабендера последовательно проводят смешение каучука и пластика в течение 5-10 мин при температуре плавления пластика, а затем при тех же условиях в смесь вводят предварительно обработанный вулканизующий агент и перемешивание продолжают еще в течение 5-10 мин. Соотношение каучук : пластик предпочтительно 90 : 10 - 50 : 50. Количество вводимого вулканизующего агента - 0,1-1,0 мас.ч. на 100 мас.ч. каучука. Вулканизующий агент, в качестве которого может быть использована, например, перекись дикумила (ТУ 38.40255-83), перекись бензоила (ТУ 6-014689387-14-89), пероксимон, до введения в смесь каучука и пластика подвергается обработке сначала 25%-ным водным раствором ВМС формулы I в массовом соотношении органическая перекись : ВМС от 1 : 1 до 1 : 10 при температуре 25 5oC и перемешивании, а затем 10%-ным водным раствором неорганической кислоты, например HCl или H2SO4, до pH среды 3 - 4. Осадок отделяют от водной фазы и сушат до постоянной массы при температуре 25 5oC. В качестве каучука может быть использован этиленпропиленовый каучук (ТУ 38.103252-92), бутилкаучук (ТУ 38.003169-79Е), нитрильный каучук (ТУ 38.103.495-91), пропиленоксидный каучук (ТУ 38.205.317-89). В качестве пластиков - полипропилен (ГОСТ 26996-86), полиэтилен (ГОСТ 16338-85), сополимер винилацетата с этиленом (ТУ 6-05-1636-73) или их смесь. Смешение может осуществляться также в присутствии соагента вулканизации, который вводится либо до, либо вместе с вулканизующим агентом в количестве 0,1-2,0 мас.ч. на 100 мас.ч. каучука. В качестве соагента вулканизации может быть использован, например, триаллилизоцианурат - ТАИЦ (ТУ 60112699-88).

Используемый для обработки вулканизующего агента ВМС получают методом радикальной сополимеризации 10-40 мас. ч. метакриловой кислоты (МАК ОСТ 6.02-56-86), 40-80 мас.ч. монометакрилата этиленгликоля (МЭГ ТУ 60142678) и 10-50 мас.ч. стирола (ВС ТУ-5-29962) в среде изопропилового спирта при 80oC с использованием в качестве инициатора динитрилазобисизомасляной кислоты (ДИНИЗ - ТУ 11303365-82), а в качестве регулятора молекулярной массы - диизопропилксантогендисульфида (Дипроксид ТУ 6-142575) в количестве 2 мас.% от массы сомономеров.

Процесс ведут до достижения 98-99% конверсии.

Физико-механические показатели получаемых ТЭП определяют по ГОСТ 270-75.

Нижеследующие примеры иллюстрируют предлагаемый способ.

Пример 1 В реактор, снабженный мешалкой, загружают 2 литра 25%-ного раствора ВМС формулы I, где a = 50, b = 130, c = 160, Me = Na+. Добавляют 100 грамм перекиси бензоила, перемешивают 10 минут при температуре 25 5oC и добавляют 60 мл 10%-водного раствора HCl (до установления pH среды на уровне 3). После выпадения осадка процесс перемешивания прекращают. Осадок, представляющий собой вулканизующий агент, обработанный ВМС, отделяют и высушивают при температуре 25 5oC до постоянной массы. Выход продукта 98% от теоретического, соотношение перекись бензоила к ВМС = 1 : 5.

В смеситель Брабендера с объемом рабочей камеры 60 см3 загружают 48 грамм (80 мас. ч.) каучука СКЭП, 12 грамм (20 мас.ч.) полипропилена и перемешивают при температуре 170 2oC в течение 15 минут при скорости вращения роторов смесителя 70 оборотов в минуту. Затем вводят в смесь 0,72 грамма (из расчета 0,25 мас.ч. перекиси бензоила на 100 мас.ч. каучука) вулкагента обработанного ВМС, как указано выше, и продолжают перемешивание в тех же условиях еще 5 минут. Выгружают материал и определяют его физико-механические показатели по ГОСТ 270-75 (значения показателей приведены в таблице).

Пример 2 В смеситель типа Бенбери с объемом рабочей камеры 50 л загружают 40 кг (80 мас.ч.) каучука СКЭП, 10 кг (20 мас.ч.) полипропилена и перемешивают при температуре 170 2oC в течение 20 минут при скорости вращения роторов смесителя 70 оборотов в минуту. Затем вводят в смесь 600 грамм (из расчета 0,25 мас. ч. перекиси бензоила на 100 мас.ч. каучука) вулканизующего агента предварительно обработанной, как описано в примере 1, перекиси бензоила, и продолжают перемешивание в тех же условиях еще 15 минут.

Выгружают материал и определяют его физико-механические показатели (значения приведены в таблице).

Пример 3 В реактор, снабженный мешалкой, загружают 2 литра 25%-водного раствора ВМС, формулы I, где a = 100, b = 200, c = 40, Me = Na+. Добавляют 100 грамм перекиси дикумила, перемешивают 10 минут при температуре 25 5oC и добавляют 45 мл 10%-водного раствора H2SO4 до установления pH среды на уровне 4. Процесс выделения и сушки обработанного вулканизующего агента проводят, как описано в примере 1. Выход 97% от теоретического, соотношение перекись дикумила к ВМС = 1 : 5.

В условиях примера 1 проводят смешение 36 г (60 мас.ч.) каучука СКЭПТ, 12 грамм (20 мас.ч.) ПП и 12 грамм (20 мас.ч.) сэвилена, а затем добавляют 1,3 г (из расчета 0,6 мас.ч. чистой перекиси дикумила на 100 мас.ч.каучука) вулкагента, обработанного ВМС, как указано выше. Результаты физико-механических испытаний приведены в таблице.

Пример 4
В условиях примера 2 проводят смешение 30 кг (60 мас.ч.) каучука СКЭПТ, 10 кг (20 мас.ч.) ПП и 10 кг (20 мас.ч.) сэвилена, а затем добавляют 1,08 кг (из расчета 0,6 мас.ч. чистой перекиси дикумила на 100 мас.ч. каучука) вулкагента, обработанного ВМС, как указано в примере 3. Результаты физико-механических испытаний приведены в таблице.

Пример 5
Предварительно проводят обработку перекиси дикумила, как описано в примере 1, используя водный раствор ВМС формулы I, где a = 200, b = 130, с = 100, Me = Na+. После подкисления 10% водным раствором H2SO4 до pH 3, процесс выделения и сушки вулканизующего агента проводят, как описано выше. Выход 98% от теоретического, соотношение (в мас.ч.) перекись дикумила к ВМС равно 1 : 10.

В условиях примера 1 проводят смешение 54 грамм (90 мас.ч.) БК, 6 грамм (10 мас.ч.) полиэтилена, а затем добавляют 1,2 грамм (из расчета 0,2 мас.ч. чистой перекиси дикумила на 100 мас.ч. каучука) вулканизующего агента обработанного ВМС, как указано выше. Одновременно с вулканизующим агентом вводят 1,2 грамм (2,0 мас.ч. из 100 мас.ч. каучука) ТАИЦ. Результаты физико-механических испытаний приведены в таблице.

Примеры 6-12
В условиях, описанных в примере 1 (для смешения в смесителе с объемом рабочей камеры 60 см3), или в условиях, описанных в примере 2 (для смешения в смесителе с объемом рабочей камеры 50 л), получают ТЭП на основе различных пар каучук-пластик (пластики). Различия, заключающиеся в использовании определенной комбинации каучук-пластик, вида органической перекиси, ВМС и их соотношениях, приведены в таблице, где представлены также результаты физико-механических испытаний полученных материалов.

Пример 13 (контрольный)
В условиях примера N 3 проводят смешение 36 грамм (60 мас.ч.) каучука СКЭПТ, 12 грамм (20 мас.ч.) ПП и 12 грамм (20 мас.ч.) сэвилена, а затем добавляют 0,2 грамма (0,6 мас.ч. на 100 мас.ч. каучука) чистой перекиси дикумила. Результаты физико-механических испытаний приведены в таблице.

Пример 14 (контрольный)
В условиях примера N 4 проводят смешение 30 кг (60 мас.ч.) каучука СКЭПТ, 10 кг (20 мас.ч.) ПП и 10 кг (20 мас.ч.) сэвилена, а затем добавляют 0,2 кг (0,6 мас.ч. на 100 мас.ч.каучука) чистой перекиси дикумила. Результаты физико-механических испытаний приведены в таблице.

Пример 15 (контрольный)
В реактор, снабженный мешалкой, загружают 2 литра 25%-водного раствора ВМС, как в примере 3, где a = 100, b = 200, c = 40, Me = Na+ и добавляют 45 мл 10%-водного раствора H2SO4. Материал выделяют и сушат, как описано в примере 3. Выход 98% от теоретического.

В условиях примера N 14 проводят смешение каучука и пластиков, а затем добавляют 0,2 кг (0,6 мас.ч. на 100 мас.ч. каучука) чистой перекиси дикумила и 0,88 кг ВМС, полученного, как указано выше. Результаты физико-механических испытаний приведены в таблице.

Таким образом, как видно из приведенных примеров, предложенное техническое решение позволяет получать ТЭП с высоким комплексом физико-механических свойств независимо от объема используемого оборудования. Следует также отметить, что так как вулканизующий агент (перекись) используется после предварительной обработки ВМС, это снижает пожаровзрывоопасность процесса.


Формула изобретения

Способ получения термоэластопластичного материала смешением каучука и пластика в массовом соотношении 90 : 10 - 50 : 50 соответственно при температуре плавления пластика с последующим введением в реакционную массу при тех же условиях вулканизующего агента перекисного типа, отличающийся тем, что вулканизующий агент в количестве 0,1 - 1,0 мас.ч. на 100 мас.ч. каучука предварительно до введения в смесь каучука и пластика обрабатывают водным раствором высокомолекулярного соединения общей формулы

где Me - Na+, K+;
a = 50 - 200;
b = 130 - 260;
c = 40 - 160,
при соотношении вулканизующий агент: высокомолекулярное соединение от 1 : 1 до 1 : 10, затем водным раствором неорганической кислоты до рН среды 3 - 4, после чего отделяют от водной фазы и высушивают.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к многоступенчатым радиационно отверждаемым латексным полимерам, к способу их получения и композиции покрытия, содержащей воду и полимер

Изобретение относится к получению полимерных композиций, используемых в качестве покрытий, клеев и связующих для слоистых пластиков

Изобретение относится к разработке композиций для изготовления прессованного материала, в частности материала для плит полов промышленных и сельскохозяйственных помещений

Изобретение относится к термопластинным полимерным композициям и может быть использовано при изготовлении упаковочных материалов

Изобретение относится к промышленности магнитных материалов, в частности, к композиционным магнитным материалам с полимерной связкой для формирования магнитов малой толщины и сложной конфигурации

Изобретение относится к способу получения наполненных поливинилхлоридных композиций, которые могут быть использованы преимущественно для изоляции проводов и кабелей, а также при производстве пленок, шлангов и т.п

Изобретение относится к изготовлению композиций на основе пластифицированного поливинилхлорида (ПВХ) и может использоваться в производстве кабельного пластиката, труб, листовых строительных материалов и т.д

Изобретение относится к резиновой промышленности, в частности к способам приготовления водного состава для изоляции листов и гранул резиновых смесей

Изобретение относится к способу получения добавки, используемой в красках и лаках для придания им определенных свойств, в частности биоцидных и электрических свойств, защищающих от воздействия ультрафиолетового излучения и препятствующих воспламенению

Изобретение относится к получению нанокомпозитов с низкой проницаемостью, а также к их применению. Способ получения нанокомпозита полимера и глины включает следующие стадии: (а) контактирование (I) раствора полимера в органическом растворителе, (II) водной суспензии глины, (III) модификатора и (IV) кислоты Бренстеда с образованием эмульсии, указанная эмульсия образована или обеспечением первой смеси, включающей раствор полимера и кислоту Бренстеда, и второй смеси, включающей водную суспензию глины и модификатор, и соединением первой и второй смеси, или соединением сначала раствора полимера и суспензии глины с образованием эмульсии и добавлением к этой эмульсии отдельно или совместно модификатора и кислоты Бренстеда; (б) перемешивание эмульсии с получением нанокомпозита; и (в) выделение нанокомпозита из эмульсии. Заявлен способ галогенирования полимера, нанокомпозит, композиция для получения изделий и изделие. Технический результат - нанокомпозиты характеризуются низкой проницаемостью к кислороду, хорошей удерживаемостью глины. 5 н. и 8 з.п. ф-лы, 11 табл., 2 ил., 24 пр.

Изобретение относится к способу получения сверхвысокомолекулярного полиэтилена (СВМПЭ) модифицированного наноразмерными частицами оксида циркония, предназначенного для изготовления керамики, катализаторов, биомедицинских материалов. Способ осуществляют в несколько стадий. Сначала получают органическую суспензию путем диспергирования СВМПЭ при интенсивном перемешивании при 80-100ºС в течение 4-5 ч в органических растворителях, к которым добавляют бензиловый спирт. Затем к нагретой суспензии вводят органический раствор тетрахлорида циркония в количестве, соответствующем его мольному соотношению к бензиловому спирту, 1:4,0-4,3, при постоянном перемешивании при 80-100ºС в течение 5-6 ч. После чего осуществляют стадию выделения СВМПЭ, модифицированного наночастицами оксида циркония. Причем в качестве органических растворителей используют ацетофенон или ацетофенон-ксилольную смесь. Материалы, полученные на основе СВМПЭ, модифицированного оксидом циркония, имеют высокие физико-механические свойства, такие как прочность на разрыв и модуль упругости. 2 з.п. ф-лы, 3 пр.
Наверх