Криогенный конденсационный насос

 

Насос относится к экспериментальному оборудованию, в частности к насосам для откачки газа из вакуумных камер и аэродинамических труб. Криогенную панель конденсационного насоса выполняют в виде пакета пластин из пористого металла с открытой системой пор. Полости между пластинами соединяют друг с другом и с откачиваемым объемом трубками из пористого металла. Такое выполнение позволяет увеличить производительность криогенного конденсационного насоса за счет увеличения эффективной площади криопанели при неизменных ее габаритных размерах. 1 ил.

Изобретение относится к экспериментальному оборудованию, в частности к насосам для откачки газа из вакуумных камер и аэродинамических труб.

Криогенные насосы являются практически единственным средством откачки, при работе которых достигаются давления ниже 10-5 Па и не выделяются какие-либо загрязнения в откачиваемый объем.

Из всех видов криогенных насосов в настоящее время наиболее распространены конденсационные и адсорбционные насосы. Действие криогенных насосов основано на физических явлениях, происходящих при низких температурах: конденсации газов на охлаждаемых металлических поверхностях (конденсационные насосы); адсорбции газов на твердых охлажденных сорбентах (адсорбционные насосы). Криогенные конденсационные насосы (ККН) способны выдерживать более высокие удельные газовые нагрузки по сравнению с адсорбционными насосами, так как в отличие от последних конденсация осуществляется в том числе и на сконденсированном на поверхности криопанели твердом осадке.

Известен криогенный конденсационный насос, включающий корпус, теплозащитный экран, систему охлаждения, криопанель (см."Вакуумная техника. Справочник". под ред. Е.С.Фролова и В.В.Минайчева, 2-ое изд., М., Машиностроение, 1992).

Недостатком этого насоса является малая поверхность контакта криопанели с откачиваемым газом и соответственно низкая производительность, обусловленная наличием единственной пластины криопанели.

Наиболее близким из известных технических решений является криогенный конденсационный насос, установленный в аэродинамической трубе (АДТ), включающий корпус (совмещен с корпусом камеры АДТ), теплозащитный экран, систему охлаждения, криопанель в виде пакета пластин (см. В.А.Жохов, В.Г.Кехваянц, Б. В. Прусов, С. С. Сидоров. "Аэродинамическая труба", авт.свидетельство N 1803758).

Недостатком указанного насоса является то, что пластины криопанели выполнены из компактного металла, что уменьшает поверхность контакта откачиваемого газа с криопанелью.

Задачей изобретения является повышение производительности криогенного конденсационного насоса.

Техническим результатом настоящего изобретения является увеличение эффективности площади криопанели при неизменных ее габаритных размерах.

Указанный технический результат достигается тем, что в криогенном конденсационном насосе, содержащем корпус, теплозащитный экран, систему охлаждения, криопанель в виде пакета пластин, пластины выполнены из пористого металла с открытой системой пор, причем полости между пластинами соединены друг с другом и с откачиваемым объемом трубками из пористого металла.

На чертеже показана принципиальная схема криогенного конденсационного насоса, размещенного в АДТ, где по сравнению с вакуумной камерой более напряженные по газовой нагрузке режима работы ККН.

Криогенный конденсационный насос содержит корпус 1 (в данном случае совпадает с корпусом камеры АДТ), теплозащитный экран 2, систему охлаждения 3, криопанель 4, состоящую из пакета пластин 5 пористого металла с открытой системой пор, трубки из пористого металла 6, соединяющие полости между пластинами друг с другом и с откачиваемым объемом. Пора считается открытой, если она сообщается с поверхностями пористого тела и проницаема для газа и жидкости при наличии градиента давления на пористом теле. Кроме того, на рисунке показаны элементы АДТ: система подачи газа 7, сопло 8, модель 9, вакуумный насос 10 для предварительной откачки камеры АДТ.

Работа криогенного конденсационного насоса в АДТ осуществляется следующим образом. После предварительной откачки камеры АДТ вакуумным насосом 10, охлаждают теплозащитный экран 2 и криопанель 4 с помощью системы охлаждения 3, которая может быть заливной, испарительной или с автономными ожижительными установками и с газовыми холодильными машинами. По достижению необходимой температуры теплозащитного экрана и криопанели с помощью системы подачи газа 7 через сопло 8 осуществляют напуск газа на исследуемую модель 9. Выходящий из сопла газ натекает на первую пластину криопанели 4 и через открытые поры пластин 5 и пористые трубки 6 перетекает в полости между пластинами и конденсируется на поверхностях пластин и в каналах пор.

Удельная поверхность (отношение суммарной поверхности тела к его массе) пористого металла, полученного методами порошковой металлургии составляет порядка 0,05 - 1 м2/г (см. Е. Л.Шведков, Э.Т.Денисенко, Н.Н.Ковенский. "Словарь - справочник по порошковой металлургии", Киев, 1982 и С.В.Белов. "Пористые металлы в машиностроении", М., 1976). Для пластин из компактных металлов, используемых в качестве криопанели, эта величина порядка 10-4 м2/г.

Использование пористого металла в качестве материала пластин криопанели позволяет увеличить эффективную площадь по сравнению с вариантом пластин из компактного металла.

Поскольку криогенные конденсационные насосы относятся к группе насосов поверхностного действия, их производительность пропорциональна эффективной площади контакта откачиваемого газа с криопанелью.

Следовательно ККН с криопанелью из пористого металла могут обладать первоначальной производительностью заметно превосходящей производительность ККН с криопанелью из компактного металла. По мере нарастания слоя конденсата в каналах пор производительность насоса будет уменьшаться и в пределе при закрытии каналов пор будет приближаться к производительности ККН с компактным металлом.

Число пористых пластин криопанели зависит от газовой нагрузки на ККН, мощности системы охлаждения и определяется габаритными размерами камеры.

Тепловое излучение от стенок насоса на криопанель составляет часть теплопритока, соизмеримую с тепловой конденсации. Поэтому при наличии криопанели в виде пакета пластин они выполняют кроме всего прочего и роль дополнительных теплозащитных экранов, снижая тепловые нагрузки на внутренние пластины.

Для криопанелей обычно выбираются материалы с высокими коэффициентами теплопроводности: медь, алюминий, сплавы на их основе и другие металлы.

Формула изобретения

Криогенный конденсационный насос, включающий корпус, теплозащитный экран, систему охлаждения, криопанель в виде пакета пластин, отличающийся тем, что пластины выполнены из пористого металла с открытой системой пор, причем полости между пластинами соединены друг с другом и с откачиваемым объемом трубками из пористого металла.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к вакуумной технике, а именно для получения сверхвысокого вакуума

Изобретение относится к вакуумной технике, а именно к конденсационным сверхвысоковакуумным насосам и может быть использовано для получения и длительного поддержания в установках различного назначения сверхвысокого сверхчистого вакуума в диапазоне давлений 10-4 1011 Па

Изобретение относится к вакуумной технике

Изобретение относится к вакуумной технике и позволяет повысить экономичность при охлаждении экрана путем уменьшения его материалоемкости

Изобретение относится к области управляемого термоядерного синтеза и предназначено для поддержания требуемого вакуума в термоядерной установке и удаления из нее продуктов синтеза (Не3, Не4) и остатков топлива (Д,Т)

Изобретение относится к области криогенной и вакуумной техники и касается конструкции вымораживающих ловушек, используемых в вакуумных технологиях, например, при вакуумировании теплоизоляционных полостей в криогенных емкостях

Изобретение относится к области криогенной и вакуумной техники и касается конструкции вымораживающих ловушек, используемых в вакуумных технологиях, например, при вакуумировании теплоизоляционных полостей в криогенных емкостях

Изобретение относится к области криогенной и вакуумной техники и касается конструкции вымораживающих ловушек, используемых в вакуумных технологиях

Изобретение относится к области криогенной и вакуумной техники и касается конструкции вымораживающих ловушек, используемых в вакуумных технологиях

Изобретение относится к области криогенной и вакуумной техники и касается конструкции вымораживающих ловушек, используемых в вакуумных технологиях

Изобретение относится к термоциклическим испытаниям

Изобретение относится к области криогенной и вакуумной техники и касается конструкции вымораживающих ловушек, используемых в вакуумных технологиях. Вымораживающая ловушка содержит цилиндрический корпус, в котором соосно размещена емкость с криогенной жидкостью, с винтовым оребрением на внешней поверхности. Цилиндрический экран установлен с зазором относительно стенки корпуса. В емкости расположен стержень с винтовым оребрением. Конструктивно стержень выполнен полым, имеющим один глухой торец, находящийся в зоне подачи паров, а другой конец, размещенный противоположно последнему, имеет бобышку с гнездом для установки нагревателя. Внутренняя полость стержня с винтовым оребрением заполнена теплопередающей жидкостью, а цилиндрический экран снабжен вспомогательной обечайкой, способствующей эффективному теплообмену. Предлагаемая ловушка обладает более эффективным использованием отходящих паров криогенной жидкости за счет увеличения площади поверхности теплообмена, совершенствование конструкции препятствует непосредственной теплопередаче через стенки экрана от окружающей среды к конденсируемым парам и конденсату. При этом сокращаются затраты времени на оттаивание конденсатора, улучшаются эксплуатационные показатели. 2 з.п. ф-лы, 1 ил.

Изобретение касается устройства (21) для предотвращения эффекта памяти у криогенных насосов, включающего в себя первую ступень (23) охлаждения и вторую ступень (25) охлаждения, которая в осевом направлении примыкает к первой ступени (23) охлаждения. Цилиндрическое ограждение (31) имеет отверстие (37) и дно (35). Через дно (35) проходит двухступенчатая охлаждающая головка (21) по центру таким образом, что первая ступень (23) охлаждения расположена вне ограждения (31), а вторая ступень (25) охлаждения - внутри ограждения (31). Между ограждением (31) и первой ступенью (23) охлаждения образовано промежуточное пространство (34). Дно ограждения (31) соединено с первой ступенью (23) охлаждения теплопроводящим образом посредством теплового мостика (33). Служащая в качестве поверхности насоса панель (43) охлаждения соединена со второй ступенью (25) охлаждения и предусмотрена внутри ограждения (31). Отражатель (39) расположен в области отверстия (37) цилиндрического ограждения (31) и находится в теплопроводящем контакте с ограждением (31) и первой ступенью (23) охлаждения. Тепловой мостик (33) предусмотрен между ограждением (31) и первой ступенью (23) охлаждения на расстоянии от ее торцевой стороны (55). Изобретение касается также корпуса (12), который охватывает охлаждающую головку (21), и криогенного насоса (11), в котором размещена охлаждающая головка (21). Повышается кпд. 2 н. и 10 з.п. ф-лы, 2 ил.
Наверх