Центробежный компрессор

 

Компрессор предназначен для сжатия рабочей среды. Центробежный компрессор содержит корпус, установленное на валу рабочее колесо, опорные и упорный подшипниковые узлы с уплотнениями. Каждое уплотнение выполнено в виде пары - неподвижного диска и охватывающей его с зазором вращающейся камеры. Полость между кольцевой камерой и диском соединена каналом с источником запорной жидкости. При этом полости с каждой стороны диска перекрыты уплотнениями, связанными с приводом их раскрытия. Вариант исполнения центробежного компрессора имеет на одной из боковой стенок вращающейся камеры кольцо, взаимодействующее с лабиринтным уплотнением. А каналы, соединяющие полости кольцевой камеры с источником жидкости, выполнены в неподвижном диске. Такое выполнение компрессора позволяет исключить изнашиваемые детали в его уплотнительных узлах, повысить надежность работы уплотнений, существенно упростить конструкцию, снизить ее стоимость. 2 з.п.ф-лы, 2 ил.

Изобретение относится к области производства центробежных машин, а именно к созданию уплотнительных узлов валов центробежных машин, и может быть использовано в компрессорах, турбинах и нагнетателях природного газа.

Широко известны конструкции нагнетателей с масляными торцевыми и щелевыми уплотнениями. При внешней простоте самих уплотнений стоимость их со всей системой обеспечения работоспособности (фильтры, насосы, арматура, емкости, теплообменники и т.п.) составляет 20-40% от стоимости компрессора.

Кроме того, система требует значительных затрат на обслуживание (потребление масла 10-200 л/сут, энергопотребление на обеспечение потока масла 7-25 м3/час на один корпус составляет 15-75 кВт).

Большинство неисправностей связано с масляными уплотнениями. Одним из перспективных направлений совершенствования компрессоров является применение сухих газовых уплотнений (европейская заявка N 0361844 - прототип).

Компрессор содержит корпус, установленное на валу рабочее колесо, внутри корпуса расположена газовая камера, изолированная с торцев с помощью сухих воздушных прокладок (уплотнений) между статором и ротором от полостей двух опорных и упорного электромагнитных подшипников вала ротора.

Одна прокладка установлена вблизи впускного отверстия, а вторая - вблизи выпускного отверстия. Как следует из работы (Труды третьего международного симпозиума "Потребители - производители компрессоров и компрессорного оборудования" 1997. Санкт-Петербург), сухие газовые уплотнения являются последним достижением технической мысли в области концевых уплотнений. Несмотря на неоспоримые эксплуатационные и экологические преимущества этих уплотнений широкое внедрение их в промышленность сдерживается большой технологической сложностью и, соответственно, стоимостью.

Так, стоимость одного уплотнения фирмы "Джон Крейн" для нагнетателя НЦ-16 (16 МВт) составляет 1,5 млрд. рублей в ценах 1997 года. Целью настоящего изобретения является совершенствование компрессора (нагнетателя), снижение его стоимости за счет принципиально нового подхода к "запиранию" газовой среды высокого давления с помощью жидкости (масла).

Поставленная цель достигается тем, что в центробежном компрессоре, содержащем корпус, установленное на валу рабочее колесо, опорные и упорный подшипниковые узлы с уплотнениями, каждое уплотнение выполнено в виде пары - неподвижного диска и охватывающей его с зазором вращающейся кольцевой П-образной камеры, полость между кольцевой П-образной камерой и диском соединена каналом с источником запорной жидкости, при этом полости с каждой стороны диска перекрыты уплотнениями, связанными с приводом раскрытия уплотнений.

Для повышения компактности конструкции компрессора, улучшения ее эксплуатационных характеристик за счет совмещения вращающейся камерой функции думмиса на одной из боковых стенок вращающейся П-образной камеры выполнено кольцо, взаимодействующее с лабиринтным уплотнением, а каналы, соединяющие П-образную кольцевую камеру с источником запирающей жидкости, выполнены в разделительном неподвижном диске.

На фиг. 1 показан центробежный компрессор (см. фиг. 1), содержит корпус, снабженный торцевыми крышками 2 и 3, на каждой из которых установлены корпусы опорных подшипниковых узлов 4 и 5 со смонтированными на них, например, дисками 6 (не менее трех на каждом корпусе), контактирующими с коаксиальной втулкой 8, которая опирается по внутренней поверхности на опорную шейку вала ротора 9. На втулке 8 смонтирована П-образная камера 7, охватывающая с зазором неподвижный разделительный диск 10, скрепленный с соответствующими корпусами 4 и 5, причем (см. фиг. 2) полость между кольцевой камерой 7 и диском 10 соединена каналом с источником запирающей жидкости, при этом полости с каждой стороны разделительного диска 10 перекрыты стояночными уплотнениями 11 и 12, взаимодействующими с приводами отжима 13 и 14, соответственно. На П-образной кольцевой камере со стороны полости нагнетания смонтировано кольцо разгрузочного устройства 15, взаимодействующее с лабиринтным уплотнением.

Ротор приводится во вращение от ведущего вала при помощи муфты 16. В исходном положении ротор неподвижен, а стояночные уплотнения 11 и 12 прижаты к соответствующим опорным поверхностям. В этом положении осуществляют заполнение запорной жидкостью внутренних полостей П-образной камеры 7 и опрессовку давлением, превышающим давление уплотняемой среды (природного газа).

При обеспечении герметичности компрессор заполняется газом и ротор начинают раскручивать. От действия центробежных сил на жидкость, при достижении давления на радиусе R неподвижного диска 10 (см. фиг. 2), превышающего давление уплотняемой среды, уплотнения 11 и 12 отжимаются от соответствующих опорных поверхностей приводами 13 и 14 (гидропоршни).

Максимальное давление, удерживаемое уплотнениями (предельный случай, когда почти вся жидкость переходит на одну сторону разделительного диска 10), определяется как Pmax = W2/2g(R2-r2)(ж-г), где R - наружный радиус неподвижного диска; r - минимальный радиус расположения уплотняющей жидкости и газа; ж, г - удельный вес уплотняющей жидкости и газа; g - ускорение свободного падения; W - угловая скорость вращения камеры.

Отсутствие протечек газа обеспечивается тем, что центробежная сила столба жидкости полости B уравновешивает центробежную силу газовой среды и ее статическое давление в полости A (см. фиг. 2).

Например, для нагнетателя природного газа мощностью 16 МВт при диаметре разделительного диска 580 мм, номинальной частоте вращения 5300 об/мин, давление масла на максимальном диаметре разделительного диска достигает 8,3 МПа, т.е. существенно больше, чем давление удерживаемой газовой среды - 5,5 МПа (для природного газа).

Пока вращается ротор в данном уплотнении отсутствует механическое трение уплотнений. Наличие П-образной кольцевой камеры позволяет упростить конструкцию думмиса компрессора тем, что на одной из стенок П-образной камеры смонтирован кольцевой поясок 15, взаимодействующий с лабиринтным уплотнением.

Таким образом, предлагаемое техническое решение позволяет исключить изнашиваемые детали в уплотнительных узлах, повысить надежность работы уплотнений, существенно упростить конструкцию, снизить ее стоимость.

Формула изобретения

1. Центробежный компрессор, содержащий корпус, установленное на валу рабочее колесо, опорные и упорный подшипниковые узлы с уплотнениями, отличающийся тем, что каждое уплотнение выполнено в виде пары - неподвижного диска и охватывающей его с зазором вращающейся камеры, полость между кольцевой камерой и диском соединена каналом с источником запорной жидкости> при этом полости с каждой стороны диска перекрыты уплотнениями, связанными с приводом их раскрытия.

2. Центробежный компрессор по п.1, отличающийся тем, что на одной из боковой стенок вращающейся камеры выполнено кольцо, взаимодействующее с лабиринтным уплотнением.

3. Центробежный компрессор по п.1, отличающийся тем, что каналы, соединяющие полости кольцевой камеры с источником жидкости, выполнены в неподвижном диске.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к насосостроению, а именно к центробежным насосам, перекачивающим жидкости с большим содержанием абразивных частиц

Изобретение относится к машиностроению , в частности к конструкции узла герметизации между валами привода и нагнетателя, и может быть использовано при проектировании компрессоров, работающих при повышенных давлениях и с коррозионными средами

Изобретение относится к энергомашиностроению и может быть использовано в качестве агрегата воздухоснабжения для двигателей внутреннего сгорания и в газотурбинных двигателях

Изобретение относится к области машиностроения и может быть использовано в центробежных и осецентробежных компрессорных машинах

Изобретение относится к вентиляторостроению и может быть использовано при проектировании центробежных вентиляторов

Изобретение относится к области вентиляторостроения, в частности к конструкции радиальных вентиляторов, и может быть использовано при проектировании вентиляторов общехозяйственного назначения

Изобретение относится к области вентиляторостроения, в частности к конструкции центробежного вентилятора, и может быть использовано при проектировании центробежных вентиляторов общехозяйственного назначения

Изобретение относится к области вентиляторостроения, в частности к конструкции центробежного вентилятора (ЦБВ), и может быть использовано при проектировании центробежных нагнетателей

Изобретение относится к электротехнике и отраслям вентиляторостроения, в которых осуществляется производство центробежных вентиляторов, оснащенных электроприводом и имеющих, в частности, два рабочих колеса и два входных патрубка
Наверх