Многокристальный модуль

 

Изобретение относится к микроэлектронике и может быть использовано при изготовлении различных полупроводниковых микросхем. Многокристальный модуль содержит несколько полупроводниковых кристаллов, контактные площадки которых расположены на одном уровне, а межкристальное пространство заполнено безусадочной конструктивной связкой, не выступающей за лицевую поверхность, которая формирует монолитный модуль с планарно-мозаичной структурой, при этом ее толщина составляет 1,0-1,5 толщины полупроводниковых кристаллов, элементы внутримодульной межкристальной коммутации размещены в одной или нескольких плоскостях параллельно над лицевой поверхностью полупроводниковых кристаллов. Технический результат изобретения заключается в создании прочного многокристального модуля с планарно-мозаичной структурой и надежной многослойной коммутацией при простоте изготовления. 1 з.п.ф-лы, 1 ил.

Изобретение относится к области микроэлектроники и может быть использовано при изготовлении различных полупроводниковых микросхем.

Из уровня техники известна интегральная схема в виде многокристального модуля, содержащая несколько полупроводниковых кристаллов и элементы многослойной коммутации (см. патент СССР 1808148, кл. H 01 L 27/12, 1993 г.) Полупроводниковые кристаллы при этом запрессованы в твердое тело (металлическую подложку), которое соединено с керамической подложкой (основанием), что усложняет конструкцию, затрудняет создание планарной поверхности для формирования многослойной коммутации и ограничивает плотность компоновки.

Изобретение направлено на создание прочного многокристального модуля с планарно-мозаичной структурой и надежной многослойной коммутацией при простоте изготовления.

Решение поставленной задачи обеспечивается тем, что в многокристальном модуле, содержащем несколько полупроводниковых кристаллов, установленных в твердом теле, которое закреплено на подложку, и элементы многослойной коммутации, согласно изобретению, контактные площадки полупроводниковых кристаллов расположены на одном уровне, а элементы внутримодульной межкристальной коммутации размещены в одной или нескольких плоскостях параллельно над лицевой поверхностью полупроводниковых кристаллов, при этом межкристальное пространство заполнено безусадочной конструктивной связкой, формирующей монолитное твердое тело, которая не выступает за лицевую поверхность полупроводниковых кристаллов и имеет толщину, составляющую 1,0 - 1,5 от толщины полупроводниковых кристаллов.

Заявленное конструктивное решение за счет одноуровневого расположения контактных площадок и использования в качестве твердого тела безусадочной конструктивной связки, заполняющей межкристальное пространство и закрепленной на подложке, в заявленном диапазоне соотношений геометрических параметров позволяет получить многокристальный модуль с достаточно гладкой планарной лицевой поверхностью, что дает возможность использовать групповые методы обработки для создания высококачественной многослойной коммутации.

На чертеже схематично представлен общий вид многокристального модуля.

Многокристальный модуль содержит полупроводниковые (например, кремниевые) кристаллы 1 с контактными площадками 2, которые расположены на одном уровне, и металлизированные элементы 3 внутримодульной межкристальной коммутации с наружным диэлектрическим покрытием 4, размещенные в одной или нескольких плоскостях (слоях) параллельно над лицевой поверхностью 5 полупроводниковых кристаллов 1. Межкристальное пространство многокристального модуля заполнено безусадочной конструктивной связкой 6, выполненной, например, в виде сплава эвтектического состава (типа Al-Ge с Тпл = 424oC) или из полиимида, которая закреплена на керамической подложке 7.

При этом безусадочная конструктивная связка 6, формируя монолитное твердое тело, не выступает за лицевую поверхность 5 и имеет толщину c, которая составляет 1,0 - 1,5 от толщины к полупроводниковых кристаллов 1. Выполненная таким образом заявленная конструкция представляет собой прочный планарно-мозаичный монолитный модуль с высокой плотностью упаковки.

При формировании монолитного модуля используют вакуумную фиксацию полупроводниковых кристаллов 1 с вакуумированием межкристального пространства перед их погружением в расплав безусадочной связки 6 (эвтектического состава), который наносят на подложку 7, что обеспечивает достаточную механическую прочность и планарность лицевой поверхности полупроводникового изделия при толщине слоя безусадочной конструктивной связки 6 между подложкой 7 и тыльной стороной полупроводниковых кристаллов 1 до 0,5 к.

Для выполнения тонкопленочной коммутации применяют групповые методы с использованием фотолитографии, лазерной пантографии, трафаретной печати и т. д. , что благодаря расположению контактных площадок 2 на одном уровне обусловливает высокую надежность и качество внутримодульных межкристальных соединений.

Формула изобретения

1. Многокристальный модуль, содержащий несколько полупроводниковых кристаллов, которые установлены в твердом теле, закрепленном на подложке, и элементы многослойной коммутации, отличающийся тем, что контактные площадки полупроводниковых кристаллов расположены на одном уровне, а элементы внутримодульной межкристальной коммутации размещены в одной или нескольких плоскостях параллельно над лицевой поверхностью полупроводниковых кристаллов, при этом межкристальное пространство заполнено безусадочной конструктивной связкой, формирующей монолитное твердое тело, толщина которой составляет 1,0 - 1,5 от толщины полупроводниковых кристаллов.

2. Многокристальный модуль по п.1, отличающийся тем, что безусадочная конструктивная связка не выступает за лицевую поверхность полупроводниковых кристаллов.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к криоэлектронике и может быть использовано при создании элементной базы сверхпроводниковой микроэлектроники и, в частности, полностью сверхпроводниковых интегральных схем

Изобретение относится к интегральным схемам СВЧ и может быть использовано в электронной технике СВЧ. Интегральная схема СВЧ, содержащая диэлектрическую подложку, выполненную из алмаза, элементы интегральной схемы - активные и пассивные элементы, линии передачи, выводы, на обратной стороне диэлектрической подложки выполнено металлизационное покрытие, при этом элементы интегральной схемы электрически соединены и заземлены согласно ее электрической схемы. На лицевой стороне упомянутой диэлектрической подложки дополнительно выполнен слой кристаллического полуизолирующего кремния толщиной не более 10 мкм, а элементы интегральной схемы - активные и пассивные элементы, линии передачи, выводы выполнены на поверхности этого слоя кристаллического полуизолирующего кремния, при этом элементы интегральной схемы выполнены монолитно, в упомянутой диэлектрической подложке и слое кристаллического полуизолирующего кремния выполнены сквозные металлизированные отверстия, а заземлена интегральная схема посредством этих сквозных металлизированных отверстий. Техническим результатом является улучшение электрических характеристик и повышение их воспроизводимости, повышение надежности, снижение массогабаритных характеристик, уменьшение трудоемкости изготовления интегральной схемы СВЧ. 5 з.п. ф-лы, 7 ил., 1 табл.

Изобретение относится к области формирования эпитаксиальных слоев кремния на изоляторе. Способ предназначен для изготовления эпитаксиальных слоев монокристаллического кремния n- и p-типа проводимости на диэлектрических подложках из материала с параметрами кристаллической решетки, близкими к параметрам кремния с помощью химической газофазной эпитаксии. В качестве материала подложки могут использоваться, в частности, лейкосапфир (корунд), шпинель, алмаз, кварц. Способ заключается в расположении подложки в реакторе, нагреве рабочей поверхности подложки до 900-1000°C, подаче потока реакционного газа, содержащего инертный газ-носитель и моносилан, наращивании кремния до образования начального сплошного слоя на рабочей поверхности подложки, добавлении к потоку реакционного газа потока галогенсодержащего реагента и формировании эпитаксиального слоя кремния требуемой толщины. Начальный сплошной слой кремния наращивают со скоростью от 3000 /мин до 6000 /мин. После формирования данного слоя на рабочей поверхности подложки расход потока реакционного газа уменьшают, снижая скорость роста на 500-2000 /мин. К потоку реакционного газа добавляют поток насыщенного пара галогенида кремния или газообразного галогенсилана, значение расхода которого задают таким образом, чтобы скорость роста кремниевого слоя вернулась к значениям 3000-6000 /мин. Технический результат изобретения - получение слоя кремния высокого качества и снижение себестоимости процесса изготовления. 3 ил., 1 пр.
Наверх