Способ получения дизельного топлива

 

Изобретение относится к способам получения дизельных топлив и может быть использовано в нефтеперерабатывающей промышленности. Описывается способ получения дизельного топлива путем гидроочистки прямогонных дизельных фракций, стабилизации гидрогенизата в ректификационной колонне с выводом с низа колонны стабильного гидроочищенного дизельного топлива, а с верха - углеводородного газа и бензиновой фракции. Бензиновую фракцию, образовавшуюся при гидроочистке прямогонных дизельных фракций, подвергают дегазации в сепараторе при температуре 50 - 80oС и давлении 0,02 - 0,05 МПа для утяжеления ее фракционного состава с последующим удалением из нее сероводорода и смешением с гидроочищенным топливом в количестве 0,2 - 0,8 мас.% на количество получаемого дизельного топлива. Технический результат - повышение выхода целевого продукта. 1 табл.

Изобретение относится к способам получения гидроочищенных дизельных топлив и может быть использовано в нефтеперерабатывающей промышленности.

Известен способ получения дизельных топлив путем гидроочистки дизельных фракций, стабилизации гидрогенизата на ректификационной колонне с выводом из куба колонны стабильного гидроочищенного дизельного топлива, а верхом - дистиллята - бензиновой фракции, образующейся при стабилизации гидрогенизата. Часть дистиллята после очистки от сероводорода выводят с установки гидроочистки в качестве низкооктанового компонента смешения при производстве товарных автобензинов, а другую часть подвергают дополнительной ректификации путем подачи в нестабильный гидрогенизат перед ректификационной колонной.

Недостатком известного способа является то, что образующаяся в качестве побочного продукта на установке гидроочистки бензиновая фракция имеет низкое октановое число (ОЧ 45-50 пунктов м.м.), затрудняющее ее использование при приготовлении современных высокооктановых марок автобензинов.

Известен способ получения дизельного топлива путем гидроочистки дизельной фракции с добавлением в сырье процесса 0,5-1,9 мас.% бензинового отгона, полученного при ректификации гидрогенизата (SU 1736999 A1, 30.05.92).

Недостатком известного способа является снижение производительности установки гидроочистки по сырью - прямогонной дизельной фракции с установок АВТ.

Наиболее близким по технической сущности и достигаемому эффекту к предлагаемому способу является способ, согласно которому дизельное топливо получают путем гидроочистки прямогонной дизельной фракции с последующей сепарацией нестабильного гидрогенизата в ректификационной колонне. Нестабильный гидрогенизат из холодного сепаратора подают в колонну в виде дополнительного орошения. Верхом ректификационной колонны в качестве побочного продукта выводят бензин - отгон в количестве 6,59 мас.% на сырье установки (SU 1759853 A1, 07.09.92).

Недостатком способа, принятого за прототип, является невысокий выход стабильного гидроочищенного дизельного топлива (91,6 мас.%).

Целью данного изобретения является увеличение выхода гидроочищенного дизельного топлива.

Поставленная цель достигается путем смешения гидроочищенного дизельного топлива с 0,2-0,8 мас.% тяжелой частью бензиновой фракции, образующейся при стабилизации гидрогенизата, после ее очистки от сероводорода.

Согласно предлагаемому способу бензиновую фракцию, образовавшуюся при гидроочистке прямогонных дизельных фракций, подвергают дегазации в сепараторе при температуре 50-80oC и давлении 0,02-0,05 МПа для утяжеления ее фракционного состава с последующим удалением из нее сероводорода и смешением с гидроочищенным топливом в количестве 0,2-0,8 мас.% на количество получаемого дизельного топлива.

Существенным отличительным признаком предлагаемого способа по сравнению со способом, принятым за прототип, является утяжеление фракционного состава бензиновой фракции, образующейся при протекании гидроочистки дизельной фракции и смешение этой бензиновой фракции в количестве 0,2-0,8 мас.% после удаления сероводорода с гидроочищенным дизельным топливом.

Таким образом, заявляемый способ соответствует критерию изобретения "новизна".

Способ осуществляют следующим образом. Прямогонную дизельную фракцию (180-360oC), содержащую 1,0-1,3 мас. % серы, подвергают гидроочистке при температуре 345-385oC, давлении 3-4 МПа, объемной скорости подачи сырья 3-5 ч-1 в присутствии промышленного алюмокобальтмолибденового (АКМ) или алюмоникельмолибденового (АНМ) катализатора. После отделения циркулирующего ВСГ и углеводородных газов нестабильный гидрогенизат, нагретый до температуры 160-260oC, направляют на стабилизацию в ректификационную колонну. Снизу колонны выводят стабильное гидроочищенное дизельное топливо с содержанием серы менее 0,18 мас.% и температурой вспышки не ниже 65oC. Пары углеводородов и сероводорода с верха колонны поступают в конденсатор-холодильник, где охлаждаются до 50-80oC и поступают в сепаратор, где при избыточном давлении 0,02-0,05 МПа несконденсировавшиеся пары углеводородов отделяют от конденсата - бензиновой фракции и подают на очистку от сероводорода. Конденсат - бензиновую фракцию выводят с нижней части сепаратора и очищают от сероводорода моноэтаноламином при температуре 40-60oC и давлении 1,3-1,6 МПа и далее направляют на смешение с гидроочищенным стабильным дизельным топливом.

Изобретение иллюстрируется следующими примерами.

Пример 1.

Прямогонную дизельную фракцию (180-360oC), полученную на установках АВТ и содержащую 1,15 мас.% серы, подвергают гидроочистке при температуре 355oC, давлении 3,2 МПа, объемной скорости подачи, сырья 4 ч-1 в присутствии промышленного АКМ катализатора ГО-70. После отделения циркулирующего ВСГ и углеводородных газов нестабильный гидрогенизат, нагретый до температуры 190oC, направляют на стабилизацию в ректификационную колонну. Снизу колонны выводят стабильное гидроочищенное дизельное топливо с содержанием серы 0,11 мас.%. Пары с верха колонны конденсируются, охлаждаются до 50oC и поступают в сепаратор, где при избыточном давлении 0,02 МПа несконденсировавшиеся пары углеводородов отделяют от конденсата - бензиновой фракции. Давление в сепараторе поддерживают путем изменения расхода углеводородного газа, выводимого из сепаратора. Конденсат - бензиновую фракцию очищают от сероводорода моноэтаноламином при температуре 50oC и давлении 1,3 МПа и далее направляют на смешение с гидроочищенным стабильным дизельным топливом.

Параметры работы сепаратора, выход и качество получаемого дизельного топлива приведены в таблице.

Пример 2.

Прямогонную дизельную фракцию (180-360oC), полученную на установках АВТ и содержащую 1,3 мас.% серы, подвергают гидроочистке при температуре 365oC, давлении 3,5 МПа, объемной скорости подачи сырья 3 ч-1 в присутствии промышленного АНМ катализатора ОД-17. После отделения циркулирующего ВСГ и углеводородных газов нестабильный гидрогенизат, нагретый до температуры 240oC, направляют на стабилизацию в ректификационную колонну. Снизу колонны выводят стабильное гидроочищенное дизельное топливо с содержанием серы 0,14 мас.% Пары с верха колонны конденсируются, охлаждаются до температуры 70oC и поступают в сепаратор, где при избыточном давлении 0,02-0,05 МПа несконденсировавшиеся пары углеводородов отделяют от конденсата - бензиновой фракции. Давление в сепараторе поддерживают путем изменения расхода углеводородного газа, выводимого из сепаратора. Конденсат - бензиновую фракцию очищают от сероводорода моноэтаноламином при температуре 60oC и давлении 1,6 МПа и далее направляют на смешение с гидроочищенным стабильным дизельным топливом.

Параметры работы сепаратора, выход и качество получаемого дизельного топлива приведены в таблице.

Пример 3. Проводят гидроочистку дизельного топлива согласно примеру 1.

Параметры работы сепаратора, выход и качество получаемого дизельного топлива приведены в таблице.

Пример 4.

Проводят гидроочистку дизельного топлива согласно примеру 1.

Параметры работы сепаратора, выход и качество получаемого дизельного топлива приведены в таблице.

Пример 5.

Проводят гидроочистку дизельного топлива согласно примеру 1, но без добавления очищенной бензиновой фракции в гидроочищенное дизельное топливо.

Параметры работы сепаратора, выход и качество получаемого дизельного топлива приведены в таблице.

Как видно из примеров 1-3, проведение гидроочистки согласно предлагаемому способу позволяет получать дизельное топливо с выходом его не менее 97,5 мас. % на пропущенное сырье, т.е. на 0,4-0,7 мас.% больше по сравнению с примером 5, когда очищенную бензиновую фракцию не подавали на смешение с гидроочищенным дизельным топливом. В том случае (пример 4), если не менять параметры работы сепаратора, добавление очищенной бензиновой фракции к гидроочищенному дизельному топливу приводит к снижению температуры вспышки ниже требований нормативной документации на продукт.

Формула изобретения

Способ получения дизельного топлива путем гидроочистки прямогонных дизельных фракций, стабилизации гидрогенизата в ректификационной колонне с выводом с низа колонны стабильного гидроочищенного дизельного топлива, а с верха - углеводородного газа и бензиновой фракции, отличающийся тем, что бензиновую фракцию подвергают дегазации в сепараторе при температуре 50 - 80oC и давлении 0,02 - 0,05 МПа для утяжеления ее фракционного состава с последующим удалением из нее сероводорода и смешением с гидроочищенным топливом в количестве 0,2 - 0,8 мас.% на количество получаемого дизельного топлива.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к нефтепереработке и, конкретно, к получению реактивного топлива

Изобретение относится к нефтехимии, в частности к переработке нефтяного сырья, Цель - повышение степени очистки сырья от серы

Изобретение относится к катализаторам, предназначенным для глубокой гидроочистки углеводородного сырья, в частности дизельных фракций, от сернистых соединений, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности
Изобретение относится к усовершенствованному способу гидропереработки углеводородного сырья, содержащего серу- и/или азотсодержащие загрязняющие вещества
Изобретение относится к области нефтепереработки и нефтехимии, конкретно к способу очистки легких фракций вторичного происхождения, в частности к нестабильной бензиновой фракции каталитического крекинга, бензиновым фракциям процессов висбрекинга, коксования или их смесям
Изобретение относится к способу удаления загрязняющих соединений серы, в частности тиофеновых соединений серы, из углеводородного сырья, предусматривающему контактирование сырья в присутствии водорода с сульфидированным никелевым адсорбентом, причем часть никеля присутствует в металлической форме, для которого константа скорости при гидрировании тетралина при 150°С составляет меньше чем 0,01 л/сек·грамм катализатора, в котором а) никелевый адсорбент дополнительно содержит оксид металла, который образует устойчивые сульфиды в используемых условиях в процессе удаления загрязняющих соединений серы из углеводородного сырья, илив) в котором названное углеводородное сырье подвергают обработке оксидом металла, который образует устойчивые сульфиды в процессе удаления загрязняющих соединений серы из углеводородного сырья после указанного контактирования с сульфидированным никелевым адсорбентом

Изобретение относится к нефтепереработке, в частности к способам облагораживания бензиновых фракций
Изобретение относится к промотированным катализаторам на смешанной подложке цеолит/алюмосиликат с малым содержанием макропор и к способам гидрокрекинга/гидроконверсии и гидроочистки, в которых они применяются
Изобретение относится к области катализа. Описан катализатор гидроочистки дизельных фракций, содержащий дисульфид молибдена, кобальт, никель или железо, псевдобемит γ-AlOOH, полученный из электровзрывного нитрида алюминия, который в качестве модифицирующей добавки содержит наноалмазы размером не более 20 нм, при следующем соотношении компонентов, % мас.: псевдобемит - 10, наноалмазы - 20, кобальт, никель или железо - 20-30, дисульфид молибдена - остальное. Технический результат - повышение механической стабильности катализатора. 1 з.п. ф-лы, 1 табл., 5 пр.
Изобретение относится к селективным гетерогенным никелевым катализаторам гидрирования ненасыщенных углеводородов и сероочистки, к их способам получения и применения. Описан селективный гетерогенный катализатор, содержащий никель, нанесенный на носитель, представляющий собой либо диатомитовый порошок, имеющий следующие физические свойства: площадь поверхности по БЭТ от 20 до 50 м2/г, размер частиц менее 10 мкм - не более 15 мас.%, более 71 мкм - не более 40 мас.%, 10-71 мкм - остальное, либо таурит сланцевый дезинтеграционный, имеющий следующие физические свойства: площадь поверхности по БЭТ от 12 до 16 м2/г, размер частиц менее 10 мкм - не более 40 мас.%, либо их смесь в соотношении 50:50. Катализатор имеет следующий состав, мас.%: никель 52,0-54,0, оксид алюминия 2,5-3,8, оксид железа 1,3-1,7, оксид натрия 0,5-1,5, оксид кальция 0,1-0,6, оксид магния 0,25-0,8, сульфидная сера 0,1-0,5, диоксид кремния остальное. Также описан способ получения вышеуказанного катализатора путем смешения носителя с 5-6%-ным водным раствором сульфата никеля, добавления в полученную суспензию 25-27%-ного раствора кальцинированной соды либо до мольного соотношения кальцинированная сода : сульфат никеля, равного 1,6-1,7:1,0, при рН среды 9,0, либо в два этапа: на первом этапе до мольного соотношения кальцинированная сода: сульфат никеля, равного 0,8-0,9:1,0, при рН среды 6,0-7,0, на втором этапе до мольного соотношения кальцинированная сода : сульфат никеля, равного 1,6-1,7:1,0, при рН среды 9,0-10,0. Далее следуют стадии фильтрации, промывки, сушки и таблетирования без стадий восстановления водородом и пассивации азотно-воздушной смесью. Перед использованием активацию свежего катализатора или регенерацию катализатора через 1500-3000 часов контактирования его с сырьем производят непосредственно в реакторе гидрирования в токе циркулирующего водорода при температуре 230-500°C в течение 5-50 часов. Также описан способ применения вышеуказанного катализатора. Технический результат - достижение высокой активности, селективности и стабильности гидрирования ненасыщенных углеводородов и сероочистки. 3 н. и 3 з.п. ф-лы, 6 табл., 9 пр.
Наверх