Способ кристаллизации высокоплавких углеводородов

 

Использование: в нефтепереработке средне- и высокоплавких парафинов, а также церезинов. С целью увеличения выхода высокоплавких углеводородов и увеличения скорости фильтрации перед кристаллизаторами раствор охлаждают до температуры помутнения и суспензию выдерживают в роторно-дисковом контакторе или емкости с перемешивающим устройством при низкой скорости охлаждения. Способ позволяет увеличить выход парафинов и улучшить его качественные характеристики, а также повысить скорость фильтрации на 20 - 30%. 9 табл., 1 ил.

Предлагаемый способ изобретения может быть использован в нефтепереработке при производстве среднеплавких и высокоплавких парафинов, а также церезинов.

На технико- экономические показатели и результаты процессов депарафинизации рафинатов и обезмасливания гачей и петролатумов оказывает решающее влияние способ кристаллизации высокоплавких углеводородов. От размеров и обособленности сформированных единичных кристаллов высокоплавких углеводородов зависит их фильтруемость на барабанных вакуумных фильтрах и четкость разделения на низкозастывающую и высокоплавкую части.

На процесс роста и укрупнения кристаллов высокоплавких углеводородов при депарафинизации рафинатов и обезмасливании гачей влияет множество факторов. Наиболее значимые из них: природа и состав смешанного растворителя, скорость охлаждения суспензии в начальный период кристаллообразования, природа и состав исходного сырья, вязкостные свойства среды и другие.

Одним из факторов, которым можно управлять в процессе кристаллообразования, является скорость охлаждения раствора сырья, а затем и суспензии. Скорость охлаждения при всех прочих равных условиях зависит от интервала температур на отдельных участках кристаллизации, где формируются единичные кристаллы. Многие исследователи, в том числе проектировщики установок масляного производства не придают должного внимания условиям, в которых образуются зародыши кристаллов и проходит начальный период их укрупнения (Н.И.Черножуков, "Технология переработки нефти и газа", ч. III, -М.: Химия, 1966 г. -с. 197-199). Кристаллизаторы со скребковыми устройствами не лучший конструктивный узел для образования зародышей и последующего укрупнения кристаллов. Существующий способ кристаллизации высокоплавких углеводородов предусматривает проведение процесса в несколько стадий: стадия смешения сырья и части растворителя; стадия термообработки, с образованием гомогенного раствора; стадия охлаждения раствора до температуры помутнения; начальной стадии кристаллообразования в кристаллизаторах; стадии дальнейшей кристаллизации высокоплавких углеводородов с порционным разбавлением суспензии растворителем (существующий способ - технология процесса кристаллообразования на АО НУНПЗ).

Существующий способ кристаллизации высокоплавких углеводородов принимаем за прототип предлагаемого изобретения.

Существующий способ образования твердой фазы в скребковых кристаллизаторах на начальной стадии образования кристаллов и их рост имеет ряд существенных недостатков. За счет сравнительно высокой скорости охлаждения в первых кристаллизаторах, выделившаяся твердая фаза не успевает откладываться на поверхности зародышей кристаллов и кристаллизуется самостоятельно. Поэтому наряду с крупными кристаллами образуются и мелкие кристаллические формирования. Мелкие кристаллы задерживают в своем составе часть маточного раствора и забивают поры фильтровальной ткани. Кроме того, твердая фаза задерживается в местах поворота внутренних труб кристаллизаторов, что также препятствует равномерному росту кристаллов (Казакова Л. П. , Крейн С.Э., "Физико-химические основы производства нефтяных масел. - М., Химия, 1978 г., -с. 147-149).

Для того, чтобы обеспечить равномерный рост кристаллов высокоплавких углеводородов, в системах кристаллизационных блоков установок депарафинизации рафинатов и обезмасливания гачей предлагаем на участке между водяными холодильниками и первыми кристаллизаторами установить сокинг-секцию (роторно-дисковый контактор или емкость с перемешивающим устройством), в которой раствор охлаждается до температуры помутнения и полученная суспензия выдерживается при низкой скорости охлаждения, и за счет медленного охлаждения происходит образование зародышей кристаллов и первоначальный рост кристаллических формирований. Дальнейший рост уже сформированных кристаллов может осуществляться в кристаллизаторах со скребковыми устройствами.

Предлагаемый способ кристаллизации высокоплавких углеводородов состоит из следующих стадий (см. чертеж): стадия смешения сырья и части растворителя в сокинг-секции; стадия охлаждения образующегося раствора до температуры помутнения в соккинг-секции; стадия выдержки суспензии в сокинг-секции при низкой скорости охлаждения; дальнейшая стадия кристаллизации высокоплавких углеводородов с порционным разбавлением суспензии растворителем в кристаллизаторах.

В первой серии опытов обезмасливанию в две и три ступени фильтрации был подвергнут низкоплавкий гач. Низкоплавкие гачи с большим трудом в три, а порой и в четыре ступени фильтрации обезмасливаются на нефтеперерабатывающих заводах.

Для проведения экспериментов в процессе обезмасливания низкоплавкого гача были выбраны следующие условия разделения: соотношение растворителя к сырью 4: 1 (по объему); состав растворителя (метилэтилкетон 60% толуол 40%); температура фильтрации (от -5 до +15oC); промывка твердого осадка на фильтре 1: 1 на сырье каждой ступени; температура охлаждения в соккинг-секции (+30, +23oC).

В каждом опыте производилось смешение сырья с растворителем до полной гомогенности раствора. Далее с использованием воздушной бани производилось постепенное охлаждение раствора до температуры помутнения и образования маловязкой суспензии. Время охлаждения составляло 30-40 минут. Колба с сырьевой суспензией переносилась в холодильную камеру, где проводилась последующая кристаллизация высокоплавких углеводородов. При достижении температуры конечного охлаждения твердая фаза отфильтровывалась.

Для второй и третьей ступеней фильтрации проводилось разбавление гача растворителем для достижения соотношения 4:1(об.), и процесс кристаллизации парафинов повторялся, но уже без соккинг-секции.Температура фильтрации на второй и третьей ступенях проводилась с превышением на 2oC.

Для сопоставления результатов экспериментов использовался холостой опыт без соккинг-секции. В этом случае раствор после смешения сырья с растворителем переносился в холодильную камеру.

Пример 1. Качественная характеристика исходного сырья: Наименование показателей - Гач Плотность при температуре 20oC, кг/м3 - 848,0 Температура плавления, oC - 39 Температура каплепадения, oС - 38 Показатель преломления при 50oC - 1,4540 Вязкость кинематическая при 50oC, мм2/с - 10,68 Содержание масла, % - 42,4 Пример 2. Гач обезмасливали в две и три ступени фильтрации. Время выдержки суспензии в соккинг-секции 30 мин. Интервал температур 30-25oC (см. табл. 1).

Выдержка суспензии в соккинг-секции позволяет улучшить качество парафина с большим выходом от сырья. Скорость фильтрации повышается на 17%.

Пример 3. Гач обезмасливали в две и три ступени фильтрации. Время выдержки суспензии в соккинг-секции 40 минут. Интервал температур при выдержке суспензии с применением воздушной бани 30-23oC (см. табл. 2).

Повышение времени выдержки суспензии в соккинг-секции до 40 минут не меняет выхода и качества парафина. Скорость фильтрации повышается на 13%.

Повышение времени выдержки суспензии в соккинг-секции до 40 минут не дает существенных преимуществ.

Пример 4. Не меняя параметров обезмасливания гача и режимных показателей, выдержку суспензии в первоначальный период кристаллизации осуществляли в лабораторном экстракторе с мешалкой. Число оборотов мешалки выдерживали на уровне 180 в минуту. Время выдержки составляло 20-30 минут. Температуру в соккинг-секции снижали с 30 до 25oC (см. табл. 3).

Как видно из данных, приведенных в таблице, и в этой серии опытов время выдержки суспензии в экстракторе не оказывает существенного влияния. Перемешивание твердой фазы существенно отразилось на выход парафинов и на улучшение его качественной характеристики. Скорость фильтрации повысилась на 20-30% по сравнению со скоростью фильтрации в холостом опыте.

Следующую серию опытов проводили по более сложной технологии с порционным разбавлением суспензии растворителем. В качестве сырья использовали смесь первого и второго боковых погонов вакуумной установки фракционировки гачей.

Процесс обезмасливания с выдержкой в экстракторе осуществляли при заранее выбранных условиях: без выдержки суспензии в соккинг- секции в три ступени фильтрации и с выдержкой в соккинг-секции в две ступени фильтрации. Гач вносился в экстрактор при температуре около 60oC и обрабатывался полуторным объемом растворителя с температурой 35oC. Образующийся раствор охлаждался в экстракторе с 45 до 37oC до уровня маловязкой суспензии. Маловязкая суспензия переносилась в холодильную камеру, где охлаждалась до +20oC и только после этого разбавлялась охлажденным до 20oC растворителем, с таким расчетом, чтобы общее разбавление сырья растворителем составляло 3:1 (об.) Процесс кристаллизации высокоплавких возобновлялся, и суспензия охлаждалась до +10oC и при этих условиях в суспензию вводился фильтрат второй ступени от предыдущего опыта.

Конечная температура охлаждения и фильтрации составляла на первой ступени +5oC, а на второй ступени +7oC.

Пример 5. Качественная характеристика смеси гачей первого и второго погонов вакуумной установки фракционировки гачей:
Плотность при температуре 20oC,кг/м3 - 852,0
Показатель преломления при 70oC - 1,4455
Вязкость кинематическая при 100oC, мм2/с - 4,18
Температура плавления, oC - 48,0
Температура каплепадения, oC - 47,0
Содержание масла, % - 30,42
Цвет (визуально) - Коричневый
Пример 6. Так как на промышленной установке обезмасливания существует система влажного растворителя, то в этой серии опытов растворитель обводняли до одного процента. Время выдержки суспензии в экстракторе меняли от 10 до 30 минут (см. табл. 4).

Парафин без использования соккинг-секции обезмасливали в три ступени при температурах +3...+5...+7oC.

Пример 7. С использованием обводненного растворителя (1% воды) был осуществлен процесс обезмасливания гача в две ступени фильтрации. Время выдержки маловязкой суспензии в экстракторе с мешалкой 20 минут (см. табл. 5).

Пример 8. С использованием обводненного растворителя (1% воды) был осуществлен процесс обезмасливания гача в две ступени фильтрации. Время выдержки маловязкой суспензии в экстракторе с мешалкой 30 минут (см. табл. 6).

Обработка суспензии в экстракторе с мешалкой позволяет не только поднять выход и уменьшить содержание масла в парафине, но и улучшить фильтруемость маточного раствора через фильтровальную перегородку.

Влияние соккинг-секции на результаты депарафинизации изучали с использованием в качестве исходного сырья рафината и IV масляной фракции (см. табл. 7).

Как и в предыдущей серии опытов, использовали обводненный растворитель, содержащий 60% метилэтилкетона и 40% толуола. Обводнение составляло один процент. Соотношение растворителя к сырью во всех опытах составляло 3,5:1 (об. ), а температура конечного охлаждения минус 23oC, промывка твердой фазы на фильтре охлажденным растворителем 1:1 на подаваемое сырье.

Сырье и растворитель смешивали в пропорции 1:1,5 (об.) и при нагреве образовывали гомогенный раствор. Гомогенный раствор переносили в экстрактор с мешалкой и охлаждали до температуры плюс 20oC в течение 10 и 20 минут при постоянном перемешивании маловязкой суспензии.

Затем суспензию переносили в холодильную камеру и продолжали процесс кристаллизации высокоплавких углеводородов до температуры +5oC. При температуре +5oC суспензии вводили 1 объем охлажденного до +5oC растворителя и продолжали кристаллизацию до минус 15oC. При этой температуре в суспензию вводили фильтрат II ступени. Кристаллизацию высокоплавких продолжали до температуры минус 23oC.

В холостом опыте гомогенный раствор сырья в растворителе тотчас же переносили в холодильную камеру.

Пример 9. Осуществлен процесс депарафинизации рафината IV масляной фракции с использованием и без использования соккинг-секции. Время выдержки суспензии 10 минут (см. табл. 8).

Скорость фильтрации с использованием соккинг-секции повысилась на 27%.

Пример 10. Осуществлен процесс депарафинизации рафината IV фракции с использованием соккинг-секции. Время выдержки суспензии 20 минут (см. табл. 9).

Скорость фильтрации с использованием соккинг-секции повысилась на 25%.


Формула изобретения

Способ кристаллизации высокоплавких углеводородов путем смешения растворителя с сырьем и охлаждения полученного раствора до заданной температуры кристаллизации высокоплавких углеводородов в кристаллизаторах, отличающийся тем, что перед кристаллизаторами раствор охлаждают до температуры помутнения и суспензию выдерживают в роторно-дисковом контакторе или емкости с перемешивающим устройством при низкой скорости охлаждения.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10



 

Похожие патенты:

Изобретение относится к способам депарафинизации масел и может быть использовано в нефтеперерабатывающей промышленности

Изобретение относится к способам получения минеральных восков из продуктов нефтепереработки, которые после сернокислотно контактной очистки могут быть использованы в качестве основы сплава для покрытия сыров

Изобретение относится к нефтехимии, в частности к получению масла и парафина

Изобретение относится к способам депарафинизации и обезмасливания нефтепродуктов с применением обезвоженных растворителей и может быть использовано в нефтеперерабатывающей промышленности

Изобретение относится к способам получения депарафинированных масел и твердых парафинов из нефтяного парафинсодержащего сырья и может быть использовано в нефтеперерабатывающей промышленности
Изобретение относится к области нефтепереработки, может быть использовано для получения защитных восков, используемых в шинной и резинотехнической промышленности для защиты резиновых изделий от озонного растрескивания
Изобретение относится к улучшенному способу выделения обезмасленных парафинов кристаллизацией с применением избирательных растворителей, включающему смешение сырья с растворителем, охлаждение полученной смеси, ее кристаллизацию. При этом перед смешением растворителя с сырьем растворитель подвергают фильтрации в намывном фильтре через слой нейтрализующего агента - гидроксида кальция, причем намывной слой формируют путем неоднократного пропускания через фильтр суспензии сухого растворителя и гидроксида кальция, взятых в соотношении, обеспечивающем создание такого слоя с достаточной активностью нейтрализующего агента. Замену намывного слоя производят при разнице показателей рН водной вытяжки растворителя на входе и выходе из фильтра-нейтрализатора менее 0,3 ед. Способ позволяет снизить коррозионный и эрозионный износ оборудования, снизить содержание механических примесей в продукте, увеличить срок службы катализатора гидроочистки. 4 пр.

Изобретение относится к депарафинизации нефтепродуктов. Изобретение касается способа получения низкозастывающих зимних сортов топлив депарафинизацией нефтепродуктов путем смешения сырья с поверхностно-активным веществом, охлаждения до температуры депарафинизации с последующим выделением парафиновых углеводородов в постоянном электрическом ноле. В качестве вспомогательного поверхностно-активного вещества используется слабоминерализованная вода с содержанием солей до 500 мг/л в виде водно-спиртового раствора, выбранного из спиртов С1-С5, в соотношении 100:1. Технический результат - улучшение низкотемпературных свойств топлива. 2 з.п. ф-лы, 1 табл., 5 пр.

Изобретение относится к получению парафинов и депарафинированных масел. Изобретение касается способа, в котором ступенчато смешивают парафинсодержащее сырье с хладагентами, в качестве которых применяют охлажденный растворитель и фильтрат второй ступени депарафинизации, в многосекционном вертикально установленном аппарате - пульсационном кристаллизаторе. Осуществляют перемешивание за счет пульсационного воздействия на весь объем сырьевой смеси, заполняющей кристаллизатор, обеспечивающего ее возвратно-поступательное движение в перетоках между секциями, при этом в перетоки непрерывно подаются хладагенты. Суспензию из пульсационного кристаллизатора подают непосредственно на фильтры, где она последовательно разделяется в две ступени фильтрования в режиме обезмасливания с получением осадка твердого парафина и фильтратов обезмасливания. Фильтрат второй ступени обезмасливания подается на разбавление суспензии, поступающей из пульсационного кристаллизатора на первую ступень обезмасливания. Фильтрат первой ступени обезмасливания охлаждается в испарительных скребковых кристаллизаторах с последующим фильтрованием полученной суспензии в две ступени в режиме депарафинизации с получением фильтрата первой ступени депарафинизации - раствора депарафинированного масла. На второй ступени депарафинизации получают фильтрат второй ступени, подаваемый в пульсационный кристаллизатор в качестве хладагента, и осадок побочного продукта. Технический результат - увеличение производительности по сырью и отбора депарафинированного масла с повышенным индексом вязкости. 2 ил, 2 табл., 2 пр.

Изобретение относится к регенерации растворителя из растворов депарафинированных масел, гачей, парафинов, фильтратов обезмасливания в процессах депарафинизации, обезмасливания и комбинированных процессах депарафинизации-обезмасливания. Изобретение касается способа, осуществляемого путем отгона растворителя в последовательно включенных ректификационных колоннах при повышении температуры потоков, из которых извлекается растворитель, с последующей подачей этих потоков в отпарные колонны. В отпарные колонны для снижения парциального давления компонентов растворителя подается азот, при этом в этих колоннах создается вакуум путем откачки смеси азота и паров растворителя вакуумным насосом. Технический результат - получение продуктов с требуемым содержанием воды, снижение энергопотребления в процессе регенерации растворителя, повышение экологической безопасности производства. 2 ил., 2 табл., 2 пр.

Изобретение относится к способу гидрообработки рафинатов масляных фракций в присутствии системы катализаторов с последующей депарафинизацией растворителем продукта. Данная система катализаторов содержит оксиды никеля, кобальта, молибдена, вольфрама, алюминия. При этом гидрообработку масляных рафинатов ведут путем контактирования сырья на первой ступени с катализатором при содержании компонентов, мас.%: оксид никеля - 3,2-5,1; оксид вольфрама - 20,0-31,5; оксид фосфора - 0,5-0,8; оксид алюминия - до 100; на второй ступени - продуктов первой ступени с катализатором при содержании компонентов, мас.%: оксид кобальта - 5,0; оксид молибдена - 19,0; оксид фосфора - 0,8; оксид алюминия - до 100. Объемное соотношение катализаторов первой и второй ступеней составляет 1:1-1:11, а условия работы на ступенях следующие: температура 300-390°С, давление 4,0-5,0 МПа, объемная скорость подачи сырья (ОСПС) 0,5-2,0 ч-1, кратность циркуляции водородсодержащего газа (Кц) 500-1000 нм3/м3 сырья. Предлагаемый способ позволяет улучшить качество депарафинированных базовых масел по содержанию серы и насыщенных углеводородов. 2 табл., 6 пр.

Изобретение относится к нефтеперерабатывающей промышленности, а именно к процессу низкотемпературной растворной депарафинизации масляных фракций. Полимерная присадка для процесса депарафинизации масляных фракций содержит активный компонент и растворитель, в качестве активного компонента используют сополимер высших алкилакрилатов с линейными алкильными группами С16-С20 и N,N-диметиламиноэтилметакрилат, в качестве растворителя - любой подходящий растворитель, обеспечивающий растворимость присадки в сырьевой смеси (бензол, толуол, масла и др.) при следующем соотношении компонентов, мас.%: сополимер 54-57; растворитель - остальное. Сополимер имеет среднечисловую молекулярную массу 17000-200000, содержит 90-95 мол.% звеньев высших алкилакрилатов и 5-10 мол.% звеньев N,N-диметиламиноэтилметакрилата. Технический результат - присадка увеличивает выход масла и скорость процесса фильтрования. 1 з.п. ф-лы, 1 табл., 5 пр.
Наверх