Склерометр

 

Склерометр предназначен для использования в измерительной технике, преимущественно при определении трибологических характеристик материалов методом царапания. Корпус установлен на основании. В верхней части корпуса размещен предметный столик для образца. Маятник установлен в корпусе на оси. На верхнем конце штока маятника закреплен индентор. Имеются фиксатор положения образца, пусковой и стопорный узлы. Склерометр снабжен узлом перемещения образца к индентору и измерителем перемещения образца. Для крепления узла и образца в предметном столике выполнен осевой канал. Измеритель выполнен в виде установленной с возможностью перемещения на нижней торцевой поверхности предметного столика подпружиненной пластины, связанной с индикатором перемещения. В радиальном канале в нижней части столика размещен фиксатор положения образца в виде упорной пластины. Участок штока под осью маятника выполнен в виде упругого элемента, на котором установлены тензорезисторы. Обеспечивается повышение точности моделирования трибологических испытаний и достоверность определения износостойкости материалов за счет исключения погрешности, обусловленной непостоянной величиной нормальной составляющей усилия царапания на контакте индентор - образец. 5 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может быть использовано при определении трибологических характеристик материалов методом царапания.

Известна конструкция маятникового склерометра, включающая корпус, столик для крепления образцов, маятник с индентором, спусковое и стопорное устройства, втулку с закрепленным упругим элементом и тензометрическими датчиками [см., авторское свидетельство СССР N 1226148, G 01 N 3/46, 1982].

Недостаток известной конструкции заключается в том, что при склерометрических испытаниях, вследствие того, что нормальная составляющая силы скрайбирования на контакте индентор-образец не выдерживается постоянной, снижается точность моделирования трибологических испытаний (имеются в виду испытания на изнашивание при трении скольжении по абразиву).

Наиболее близким по технической сущности является склерометр, содержащий основание, маятник с закрепленным индентором в верхней части, пусковое и стопорное устройства, предметный столик с прижимным болтом [Тененбаум М.М. Склерометры для изучения сопротивления царапанию и их применение. В кн.: Склерометрия. - М.: Наука, 1968, с. 124].

Недостаток известной конструкции заключается в том, что испытание на царапание различных материалов проводят при условии постоянства глубины царапины (геометрическое нормирование) для всех материалов, в результате чего нормальная составляющая силы царапания непостоянна, и следствием чего является снижение точности моделирования испытаний на изнашивание и соответственно достоверности определения трибологических характеристик материалов.

Задачей изобретения является повышение достоверности определения трибологических характеристик материалов за счет исключения погрешности, обусловленной непостоянной величиной нормальной составляющей усилия царапания на контакте индентор- образец.

Поставленная задача достигается тем, что склерометр, содержащий установленный на основании корпус, в верхней части которого размещен предметный столик для образца, фиксатор положения образца, маятник, установленный в корпусе на оси, на верхнем конце штока которого закреплен индентор, пусковой и стопорный узлы, согласно изобретению снабжен узлом перемещения образца к индентору, установленным в верхней части столика, и измерителем продольно-осевого перемещения образца.

В предпочтительных вариантах: - измеритель продольно-осевого перемещения образца выполнен в виде установленной с возможностью осевого перемещения на нижней торцевой поверхности предметного столика пластины, связанной с индикатором перемещения; - пластина подпружинена относительно нижней торцевой поверхности предметного столика; - в предметном столике выполнен осевой канал для размещения в нем образца и исполнительного элемента узла перемещения; - участок штока под осью маятника выполнен в виде упругого элемента, на котором установлены тензорезисторы; - фиксатор положения образца размещен в выполненном в нижней части столика радиальном канале и выполнен в виде упорной пластины, контактирующей с одной стороны с боковой поверхностью образца, а с другой с прижимным винтом.

В дальнейшем изобретение поясняется описанием конкретного варианта его выполнения и сопровождающими чертежами, на которых: на фиг.1 показан общий вид склерометра; на фиг.2 - схема крепления образца в предметном столике; на фиг. 3 - схема крепления образца в предметном столике до начала испытаний при смещении образца.

На основании склерометра 1 установлен корпус 2, в котором закреплен шток маятника 3, представляющий собой двуплечий рычаг с индентором 4 (твердосплавный конус от твердомера Роквелла с углом 120o) в верхней части, упругим элементом 5 с тензорезисторами 6 в нижней, и груз 7. Шток маятника вращается на оси 8, лежащей на двух шариковых подшипниках в корпусе установки (не показаны). Образец 9 закреплен в предметном столике 10 таким образом, что одним торцем упирается в поджатую пружинами 11 пластину 12, а на другой воздействуют узлом перемещения 13, вращая маховик 14. Узел перемещения образца 13 закрепляется во втулке 15. Контроль продольно-осевого перемещения образца совместно с пластиной (см. фиг. 3) осуществляется по индикатору перемещения 16 (например, многооборотный индикатор типа 1МИГ ГОСТ 9696-75). Положение образца в предметном столике фиксируют в радиальном направлении упорной пластиной 17 посредством резьбового соединения прижимного винта 18 и втулки 19. Маятник приводится в движение пусковым устройством 20 и останавливается стопорным устройством 21. Тензорезисторы подключены к тензометрическому усилителю 22 и осциллографу 23.

Единичное царапание индентором (при склерометрических испытаниях) моделирует скольжение единичной абразивной частицы по поверхности материала (или образца материала по абразивной частице при скольжении по закрепленному абразиву). Испытания на изнашивание при скольжении по абразиву проводят в соответствии с ГОСТ 17367-71, при постоянной удельной нагрузке на контакте образец-абразив. Поэтому целесообразно применить условие проведения испытаний при постоянной нагрузке на контакте, к испытаниям на царапание (склерометрическим). При склерометрических испытаниях сила царапания (сила скрайбирования) разделяется на две составляющие R и Rn. Составляющая R обеспечивает скольжение индентора вдоль поверхности образца, а Rn - усилие прижатия индентора к поверхности (т.е. это усилие на контакте индентор - образец, которое должно быть постоянным в соответствии с вышеизложенным). Ранее склерометрические испытания проводили без учета постоянства нормальной составляющей силы скрайбирования, поэтому при реализации данного условия будет повышена точность моделирования механизма воздействия частицы при абразивном изнашивании.

Поддержание постоянного значения нормальной составляющей силы царапания при склерометрических испытаниях осуществляется посредством получения постоянной глубины лунки царапины в среднем сечении для определенной величины твердости материала. Для этого предварительно по эмпирической формуле рассчитывают значение глубины царапины, которая должна получиться в результате единичного царапания при заданном значении нагрузки (нормальной составляющей силы царапания) Rn=const и соответствующей твердости материала HRC для каждого образца: где hрасч. - расчетная глубина лунки царапины; HRC - твердость материала; Rn - нормальная составляющая силы царапания.

Регулировку глубины царапины h осуществляют изменением расстояния между индентором и торцем образца, причем перемещение образца (продольное) на величину обеспечивают вращением маховика 14 узла перемещения образца 13 (см. фиг. 3). Принимается, что минимальное расчетное значение ожидаемой глубины лунки - h0 будет соответствовать 0 = 0. Для остальных образцов величину перемещения рассчитывают как разность расчетного значения hрасч и h0:
= hрасч.-h0.
При этом величину последней устанавливают до начала царапания по шкале индикатора перемещения 16 (типа 1МИГ ГОСТ 9696-75).

В связи со сложностью и низкой точностью измерения глубины царапины h измеряют ширину лунки царапины b0 с помощью микроскопа (например, МИМ-7), т. к. известно, что при царапании коническим индентором с углом при вершине 120o, глубина и ширина лунки связаны между собой соотношением:
h=0,289 b0
Маятниковый склерометр работает следующим образом.

Образец 9 устанавливают в предметный столик 10, и вращая маховик 14, перемещают образец посредством узла перемещения 13 в продольно-осевом направлении до соприкосновения нижней торцевой поверхности с индентором 4, которое определяют визуально слабым покачиванием штока маятника 3. Далее устанавливают стрелку индикатора перемещения 16 (типа 1МИГ ГОСТ 9696-75) в положение "0" (см. фиг. 2) и отводят шток маятника 3 из положения равновесия до фиксирования в пусковом устройстве 20. Вращая маховик 14, обеспечивают продольно-осевое перемещение образца 9 (в случае, если величина > 0 ), при этом пластина 12 перемещается вместе с образцом на величину , которая определяется по отклонению стрелки индикатора перемещения 16 (типа 1МИГ ГОСТ 9696-75) (см. фиг. 3) и соответствует ожидаемой глубине лунки царапины h для материала твердости HRC (некоторая величина) при постоянном значении нормальной составляющей силы царапания Rn=const. Для фиксирования образца в этом положении закручивают прижимной винт 18 и прижимают боковую поверхность образца пластиной 17. Маятник 3 приводится в движение пусковым устройством 20, совершает рабочий ход, во время которого индентор 4 царапает торец образца 9 (см. фиг. 3) и останавливается стопорным устройством 21. Одновременно с пуском маятника 3 включается измерительная тензометрическая аппаратура: усилитель 22 и осциллограф 23. При сопротивлении материала образца 9 передвижению индентора 4 деформируется, формируется упругий элемент 5 штока маятника, тензорезисторы 6 регистрируют величину деформации как тангенциальную составляющую силы царапания R (максимальное значение силы на осциллограмме соответствует требуемой глубине лунки h в среднем сечении). Сигнал тензорезисторов 6 усиливается тензометрическим усилителем 22 и записывается на осциллографе 23. После остановки маятника 3 стопорным устройством 21 образец 9 извлекают из предметного столика 10 и на микроскопе (МИМ-7) измеряют характерные размеры царапины: ширину лунки царапины b0 и ширину пластически деформированной зоны b*.

Расчет показателей трибологических свойств производится по значениям максимальной тангенциальной составляющей силы царапания R, ширины лунки b0 и пластически деформированной зоны b*. Под трибологическими характеристиками понимаются коэффициент трения, износостойкость и др.

Коэффициент трения при царапании рассчитывается по формуле

где (R)max - максимальное значение тангенциальной составляющей силы царапания.

Износостойкость рассчитывают по комплексу локальных и объемных механических характеристик:
И = A1HV+A2в+A30,2+A4Eпд+A5E*+A6*+A7+A8.
где A1 - A8 - коэффициенты регрессии; HV - твердость по Виккерсу; в - предел прочности; 0,2 - предел текучести; - относительное сужение; - относительное удлинение; Eпд - энергоемкость при пластическом деформировании; E* - локальная энергоемкость; * - напряжение при царапании; - коэффициент локальной пластичности.

При этом E* - локальная энергоемкость; * - напряжение при царапании; - коэффициент локальной пластичности рассчитываются по результатам склерометрических испытаний по формулам:
- коэффициент локальной пластичности
= b*/b0;
- напряжение при царапании
* = (R)max/(b0)2
- локальная энергоемкость
E* = 3,24(R)max/(b*)2.
Технический результат изобретения состоит в том, что при царапании (скрайбировании) силовое нормирование (Rn=const) обеспечивает более точное моделирование механизмов воздействия индентора и абразивной частицы на поверхность материала при слерометрических и трибологических испытаниях.


Формула изобретения

1. Склерометр, содержащий установленный на основании корпус, в верхней части которого размещен предметный столик для образца, фиксатор положения образца, маятник, установленный в корпусе на оси, на верхнем конце штока которого закреплен индентор, пусковой и стопорный узлы, отличающийся тем, что он снабжен узлом перемещения образца к индентору, установленным в верхней части столика, и измерителем продольно-осевого перемещения образца.

2. Склерометр по п.1, отличающийся тем, что измеритель продольно-осевого перемещения образца выполнен в виде установленной с возможностью осевого перемещения на нижней торцевой поверхности предметного столика пластины, связанной с индикатором перемещения.

3. Склерометр по п.2, отличающийся тем, что пластина подпружинена относительно нижней торцевой поверхности предметного столика.

4. Склерометр по п. 1, отличающийся тем, что в предметном столике выполнен осевой канал для размещения в нем образца и исполнительного элемента узла перемещения.

5. Склерометр по п.1, отличающийся тем, что участок штока под осью маятника выполнен в виде упругого элемента, на котором установлены тензорезисторы.

6. Склерометр по п.1, отличающийся тем, что фиксатор положения образца размещен в выполненном в нижней части столика радиальном канале и выполнен в виде упорной пластины, контактирующей с одной стороны с боковой поверхностью образца, а с другой с прижимным винтом.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к контролю эксплуатационных параметров и физико-механических характеристик изделий

Изобретение относится к области машиностроения, преимущественно инструментального производства, и может быть использовано при изготовлении режущего или другого инструмента

Изобретение относится к испытательной технике, а именно к устройствам для испытаний на микротвердость вдавливанием и царапанием алмазным индентором

Изобретение относится к устраййтвам для исследования материалов методом еклерометрии

Изобретение относится к испытаниям материалов, а именно к измерению твердости металлических слоев

Изобретение относится к испытательным приборам и может быть использовано для склерометрических исследований материалов

Изобретение относится к испытательной технике и может быть использовано для определения твердости

Изобретение относится к технике измерений механических свойств материалов

Изобретение относится к определению физико-механических характеристик материалов, в частности поверхностных слоев объектов методом склерометрии для оценки трещиностойкости, прочности сцепления покрытия с основой и т.д

Изобретение относится к области определения физико-механических характеристик материалов, в частности к микромеханическим испытаниям материалов с покрытиями и инструментальных материалов

Изобретение относится к области машиностроения и может использоваться при определении механических свойств деталей с электролитическим гальванопокрытием, преимущественно с твердым хромовым

Изобретение относится к испытательной технике и может быть использовано для исследований прокаливаемости сталей и сплавов методом торцевой закалки

Изобретение относится к области измерительных приборов для определения износа, а именно к устройствам для определения характеристик работы царапания

Изобретение относится к испытательной технике

Изобретение относится к механике разрушения материалов

Изобретение относится к области исследований структурных изменений материалов, в частности полимеров, и может быть использовано для определения структурной анизотропии и анизотропии механических свойств таких полимеров, как полиэтилентерефталат, для послойного изучения напряженно-деформированного состояния изделий из этого полимера, для прогнозирования поведения материала полимера в изделии в зависимости от условий эксплуатации

Изобретение относится к испытательной технике

Изобретение относится к области неразрушающего контроля на прочность металлов в конструкциях
Наверх