Способ переработки высокомолекулярного углеводородного сырья

 

Использование: нефтехимия. Высокомолекулярное сырье подвергают гидрогенизации при равномерном распределении в исходном сырье катализатора , полученного непосредственно в зоне реакции из эмульсии, образованной смешением исходного сырья с водным раствором, содержащим соль молибденовой кислоты, например парамолибдат аммония, и аммиак, взятые в массовом соотношении из расчета аммиак: молибден, равном 0,15 - 0,39:1, и имеющей диаметр капель 0,3-5 мкм. Образующиеся органические соединения с температурой кипения ниже 350°С отгоняют. Остаток с температурой кипения выше 350°С сжигают полностью или частично при 800-1000°С и из золошлаковых остатков извлекают катализатор в виде парамолибдата аммония, рециркулируемого в процесс, а также редкие и благородные металлы, содержащиеся в исходном сырье. Технический результат - удешевление и упрощение технологического процесса. 12 з.п. ф-лы, 1 ил., 9 табл.

Изобретение относится к области переработки высокомолекулярного углеводородного сырья, в частности высококипящих остатков переработки сернистых нефтей, газовых конденсатов, природных битумов, битуминозных песков и др., с получением бензиновых и дизельных фракций, а также соединений ценных металлов и зольных концентратов благородных металлов.

Известен способ гидрогенизационной переработки тяжелого нефтяного сырья с коксовым числом 5-50%, содержащего 2-5% серы, более 75% углеводородов с Т. кип. >400oC, смешанного с 5-50% фракции с Т. кип. 150-400oC. В смеси суспендируют термически разлагаемое соединение металла (10-950 г/т в расчете на металлы IV, V, VI, VII и VIII групп Периодической системы) и 0,1-10% кислотного катализатора. Процесс проводят при температуре 250-500oC, давлении 25-50 МПа в проточном реакторе, реакторе с перемешиванием или реакторе с псевдоожижением при объемной скорости 0,1-10 час-1. Более 5% сырья превращается в низкокипящие продукты (пат. США N 4659454, C 10 G 47/02, НКИ 208-111, 1987).

Недостаток этого способа заключается в отсутствии решения вопроса регенерации катализатора, высоком давлении водорода >10 МПа, требующем специального технологического оборудования, в недостаточно высоком выходе светлых углеводородных фракций, а также в отсутствии решения получения товарных соединений ценных металлов (например, ванадия галлия), содержащихся в исходном сырье.

Известен способ переработки тяжелого нефтяного сырья гидрогенизационной обработкой при температуре 330oC в присутствии катализатора - сульфида металла, переходной группы, суспендированного в сырье.

Катализатор предварительно получают по следующей схеме: - смешивают соединение металла VIB, VIIB и VIII группы Периодической системы, например молибденовую синь, фосфорномолибденовую кислоту, соль фосфорномолибденовой кислоты, с сырьем, содержащим асфальтены и органические полисульфиды; - нагревают полученный предконцентрат в присутствии газа, содержащего водород с парциальным давлением 0,5-20 МПа и температурой 260-450oC. Полученный концентрат катализатора вводят в исходное сырье (Патент Франции N 2631631, C 10 G 47/06, 1989).

Недостаток известного способа - наличие дополнительной стадии подготовки катализатора и необходимость использования полисульфидов, что существенно усложняет и удорожает технологию процесса.

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является процесс гидрогенизационного превращения тяжелых углеводородов до более низкокипящих продуктов при температурах 343-515oC в присутствии водорода (3,5-14 МПа) с добавкой концентрата катализатора.

Концентрат катализатора предварительно готовят следующим образом: а) получают предконцентрат катализатора смешением углеводородного масла, исключая фракции с температурой кипения выше 570oC, с водным раствором соединения металла, из групп II, III, IV, V, VIB, VIIB и VIII Периодической системы в количестве, обеспечивающем 0,2-2 мас.% металла на указанное масло, б) нагреванием предконцентрата без добавления водорода при температурах 275-450oC с использованием элементарной серы как сульфидирующего агента с соотношением (атомным) S: металл от 1 : 1 до 8 : 1, получают концентрат катализатора (Патент PCT WO 93/03117, C 10 G 47/06, 1993).

Недостаток прототипа заключается в необходимости дополнительной сложной стадии приготовления в особых условиях концентрата катализатора, в использовании относительно дорогой фосформолибденовой кислоты, в отсутствии решения вопросов, связанных с регенерацией катализатора и получением товарных соединений ценных металлов (например, ванадия и галлия), содержащихся в исходном сырье.

Задача изобретения состоит в удешевлении и упрощении технологического процесса за счет обеспечения получения катализатора непосредственно в процессе гидрогенизации, его регенерации, а также получения товарных соединений ценных металлов и зольных концентратов благородных металлов.

Поставленная задача решается предлагаемым способом переработки высокомолекулярного углеводородного сырья гидрогенизацией при повышенных температуре и давлении в присутствии катализатора, содержащего дисульфид молибдена, полученного из водного раствора соли молибденовой кислоты в присутствии сульфидирующего агента в углеводородной среде, отличительная особенность которого состоит в том, что процесс гидрогенизации ведут при равномерном распределении в исходном сырье катализатора, полученного непосредственно в зоне реакции из эмульсии, образованной смешением исходного сырья с водным раствором, содержащим соль молибденовой кислоты, например парамолибдат аммония, и аммиак, взятые в массовом соотношении из расчета аммиак: молибден, равном от 0,15 до 0,39:1, и имеющей диаметр капель 0,3-5 мкм, причем образующиеся в процессе гидрогенизации органические соединения с температурой кипения ниже 350oC отгоняют, а остаток с температурой кипения выше 350oC сжигают полностью или частично при температурах 800-1200oC и из полученных золошлаковых остатков извлекают катализатор в виде парамолибдата аммония, рециркулируемого в процесс, а также редкие и благородные металлы, содержащиеся в исходном сырье.

А также тем, что: - используют исходное высокомолекулярное углеводородное сырье, включающее серусодержащие соединения, являющиеся сульфидирующим агентом, и/или гидрогенизацию осуществляют водородсодержащим газом, содержащим сульфидирующий агент; - для гидрогенизации используют газ, имеющий состав, мас.%: водород 19-80, окись углерода 0,02-3, метан - 0,5-80, сероводород 1-10; - катализатор вводят в количестве 0,01-0,1 мас.% молибдена на исходное сырье; - в качестве катализатора используют дисульфид молибдена с добавкой сульфида металла - никеля и/или кобальта; - катализатор дисульфид молибдена с добавкой сульфида металла - никеля и/или кобальта получают из эмульсии, образованной смешением исходного сырья и водного раствора, содержащего соединения молибдена и металла добавки, извлеченных из золошлаковых остатков, и аммиака, при соотношении молибден: металл добавки, равном от 0,05 до 0,3;
- используют катализатор с размером частиц 0,02-0,3 мкм;
- остаток гидрогенизации с температурой кипения выше 350oC в количестве 60-90 мас. % рециркулируют в процесс, смешивая с исходным сырьем, а 10-40 мас.% остатка направляют на сжигание;
- сжигание остатка с температурой кипения выше 350oC ведут при избытке воздуха 5-25% от стехиометрического количества;
- твердые продукты, образующиеся в процессе сжигания остатка и уносимые дымовыми газами, улавливают фильтром с получением золы;
- для извлечения молибдена, никеля и/или кобальта золошлаковый остаток обрабатывают водным раствором, содержащим 7-11 мас.% аммиака и 3-6 мас.% карбоната аммония при массовом отношении золошлаковый остаток: раствор, равном 1: 2-5, полученную суспензию фильтруют с образованием остатка и фильтрата, который упаривают или разбавляют с получением раствора с заданным содержанием молибдена и соотношением NH3:Mo;
- остаток после извлечения молибдена, никеля и/или кобальта обрабатывают водой или маточником, образующимся после осаждения ванадата аммония, содержащими 1-1,5 мас.% аммиака при температуре 95-98oC, полученную суспензию отфильтровывают с получением остатка и фильтрата, из фильтрата в процессе охлаждения отделяют кристаллы ванадата аммония, полученный маточник используют для выщелачивания остатка, образующегося после извлечения молибдена, никеля и/или кобальта;
- остаток после извлечения ванадия обрабатывают 20% едким натром при температуре 90-95oC при отношении жидкой и твердой фаз от 2 до 3, суспензию фильтруют, выделенный твердый остаток, содержащий благородные металлы, выводят из процесса в качестве товарного продукта, а из фильтрата цементацией металлическим алюминием извлекают галлий.

На чертеже приведена принципиальная схема гидрогенизации углеводородного высокомолекулярного сырья, где 1 - эмульгатор-смеситель, 2 - реактор гидрогенизации, 3 - сепаратор, 4 - котлоагрегат для сжигания части высококипящего остатка гидрогенизации, 5 - фильтр очистки дымовых газов, 6 - блок гидрометаллургической переработки золошлаковых остатков, включающий ряд реакторов.

Процесс осуществляют следующим образом. В смеситель-эмульгатор 1 подают исходное высокомолекулярное углеводородное сырье (I), такое как высококипящие остатки переработки нефтей, в том числе сернистых и высокосернистых, газовых конденсатов, природных битумов, битуминозных песков и др., рециркулирующий остаток гидрогенизации (II) (Т кип. > 350oC), содержащий катализатор в форме сульфидов; регенерированный раствор соединений металлов-катализаторов (III), содержащий необходимое количество аммиака; свежий раствор молибдата аммония (IV) для восполнения потерь молибдена. Диаметр капель эмульсии лежит в пределах 0,3-5 мкм. Раствор соединений молибдена и металла добавки - никеля и/или кобальта содержит помимо соли молибденовой кислоты растворимый в аммиаке комплекс никеля и/или кобальта в соотношении (массовом) молибден : металл добавки, равном 1 : (0,05 - 0,3), и избыток аммиака при соотношении молибден: аммиак, равном 1 : (0,15 - 0,39), указанное соотношение компонентов обеспечивает стабильность эмульсии. Сырьевую смесь в виде эмульсии подают в реактор гидрогенизации 2, где осуществляют ее гидрогенизацию при давлении водорода 3-8 МПа и температуре 400-450oC.

В процессе нагревания и гидрогенизации исходная водная эмульсия превращается в мелкодисперсную суспензию частиц дисульфида молибдена и сульфида никеля и/или кобальта с размером частиц от 0,02 до 0,3 мкм, которые равномерно распределены в реакционной зоне.

Сульфидирование соединений молибдена с добавкой соединения никеля и/или кобальта осуществляют за счет серусодержащих соединений, присутствующих в сырье и/или сероводорода газа, используемого для гидрогенизации, например, имеющего состав, мас. %: водород - 19-80, окись углерода 0,02-3,0, метан - 0,5-80, сероводород - 1-10.

Вследствие особенностей образования катализатора из микрокапель эмульсии в процессе нагрева сырья катализатор имеет высокую концентрацию искажений кристаллической решетки и каталитически активных сорбционных центров. Преимуществом катализатора является доступность его поверхности для органических молекул любой формы и размеров. Соединения серы, присутствующие в сырье, и сероводород резко увеличивают активность катализатора. Поэтому с ростом содержания серы показатели процесса гидрогенизации не только не ухудшаются, а наоборот возрастают.

Предпочтительное содержание катализатора в исходном сырье в расчете на молибден составляет 0,01-0,1 мас.%.

Продукты гидрогенизации поступают в сепаратор (3), где разделяются на газ и жидкие фракции гидрогенизации. Фракции с Т.кипения < 350oC используются для производства моторных топлив. Остаток дистилляции - фракция с Т. кипения > 350oC содержит катализатор в форме коллоидоподобных частиц, также соединения ценных и благородных металлов, содержащихся в исходном сырье. Частично (60-90%) фракции с Т. кипения выше 350oC для сокращения расходов, связанных с регенерацией катализатора и извлечением металлов, возвращают в процесс в смеситель (1), где смешивают с новой порцией исходного сырья, 40-10% этой фракции сжигают в котлоагрегате (4).

Сжигание остатка с температурой кипения выше 350oC ведут при избытке воздуха 5-25% от стехиометрического количества. Все твердые продукты сжигания (шлаковые остатки), осаждающиеся в котле, собирают. Для повышения степени извлечения металлов твердые продукты, образующиеся в процессе сжигания и уносимые из топки вместе с газами, улавливают фильтром 5 (рукавным или электрофильтром).

Зольный концентрат, а также периодически собираемые твердые частицы (шлак), накапливаемые в котле 4, поступают в обогреваемый паром реактор с перемешивающим устройством, входящий в систему реакторов блока 6 гидрометаллургической переработки золошлаковых остатков, где происходит выщелачивание молибдена. Для этого в реактор подают водный раствор, содержащий 7-11 мас.% аммиака и 3-6 мас.% карбоната аммония при массовом отношении золошлаковый остаток: раствор 1 : 2 - 5, суспензию фильтруют на фильтр-прессе со скоростью 1 м32/час. Осадок на фильтре промывают, фильтрат упаривают или разбавляют до содержания в растворе молибдена, позволяющего при смешении с исходным сырьем обеспечивать заданную концентрацию молибдена. Раствор парамолибдата аммония возвращают в смеситель-эмульгатор 1. При выщелачивании золошлаковых остатков аммиачно-карбонатным раствором содержащийся в них никель и/или кобальт частично (30-60%) переходит в раствор парамолибдата аммония и возвращается в процесс гидрогенизации. Поскольку никель и/или кобальт являются активными промоторами (активаторами) каталитической активности MoS2 в реакции гидрогенизации, их присутствие в растворе парамолибдата аммония приводит к увеличению суммарного выхода легких фракций гидрогенизата.

В зольном остатке после извлечения молибдена, никеля и/или кобальта ванадий присутствует в форме ванадата аммония, плохо растворимого в холодной воде, но хорошо растворимого в горячей. Для извлечения ванадия осадок после фильтрации направляют в следующий обогреваемый паром реактор с перемешивающим устройством блока гидрометаллургической переработки 6. Выщелачивание производят рециркулирующим маточником при температуре 95-98oC в течение 1,5 часа. Суспензию в горячем виде фильтруют на фильтре. Фильтрат охлаждают до температуры 25 - 30oC, в результате чего происходит кристаллизация ванадата аммония. Суспензию кристаллов фильтруют, влажные кристаллы сушат и упаковывают.

В остатке после извлечения ванадия могут присутствовать галлий, золото, серебро и платиновые металлы.

В технологической схеме предусмотрено извлечение галлия. Для этой цели осадок с фильтра подается в последующий обогреваемый реактор с перемешивающим устройством блока переработки 6, где происходит выщелачивание галлия 20%-ным раствором едкого натра. Выщелачивание проводят при отношении жидкой фазы (м3) к твердой (т), равном 1 : 2 - 3, температуре 90-95oC в течение 2 часов.

Суспензию фильтруют, осадок на фильтре промывают небольшим количеством воды. Из фильтрата галлий извлекают цементацией металлическим алюминием.

Остаток после извлечения молибдена, никеля, кобальта ванадия и галлия содержит золото, серебро и платиновые металлы в концентрациях существенно более высоких, чем в традиционном рудном сырье. Для извлечения благородных металлов остаток сушат и в качестве товарного продукта передают на специализированные предприятия для дальнейшей переработки.

Ниже приведены примеры, иллюстрирующие способ, но не ограничивающие его.

Пример 1. Гидрогенизации подвергают остаток атмосферной разгонки нефти.

Состав и свойства остатка приведены в табл. 1.

Для приготовления катализатора остаток смешивают с раствором, содержащим парамолибдат аммония, (NH4)2MoO4, аммиачное соединение никеля (II) и аммиак. Процесс приготовления катализатора осуществляют следующим образом. В 100 кг остатка эмульгируют 2,3 кг раствора, содержащего: 18,2 г парамолибдата аммония (9,98 г Mo), (2,964 г Ni) и 1,49 г аммиака. Эмульгирование проводят в дисковом диспергаторе с получением водных капель эмульсии с диаметрами от 0,3 до 5 мкм. В полученной эмульсии содержание молибдена на остаток составляет 0,01%. Соотношение (массовое) Mo : Ni = 1:0,3, Mo : NH3 = 1 : 0,15.

Приготовленную эмульсию подвергают гидрогенизации в проточном реакторе при температуре 420oC, давлении водорода 6 МПа, объемной скорости 2 ч-1 и объемном соотношении H2 : сырье = 1000 нл/л.

Катализатор образуется в процессе гидрогенизации, в виде суспензии частиц MoS2 с диаметром от 0,02 до 0,08 мкм, равномерно распределенных в реакционной зоне.

Выход и состав полученных в результате гидрогенизации продуктов приведен в табл. 2.

Фракции гидрогенизата с Т.кип. ниже 350oC могут быть использованы для получения моторных топлив.

В остаток гидрогенизации с t кипения выше 350oC переходят ценные металлы, содержащиеся в исходном сырье, а также соединения металлов-катализаторов.

Для извлечения ценных металлов и регенерации катализатора остаток гидрогенизации с температурой кипения выше 350oC в количестве 36,6 кг сжигают в распыленном состоянии в опытном стендовом котлоагрегате, оборудованном рукавным фильтром для очистки дымовых газов от пыли. Коэффициент пылеулавливания - 99%. Процесс сжигания проводят с избытком воздуха 1,25. Температура в зоне горения - 800oC.

Уловленный фильтром зольный унос и твердые шлаковые остатки в количестве 147,3 г, собранные из котлоагрегата, имеют состав, приведенный в табл. 3.

Золошлаковые остатки в количестве 147,3 г обрабатывают 294,6 г водного раствора, содержащего 7% NH3 и 3% (NH4)2CO3. Выщелачивание проводят в реакторе с перемешивающим устройством при 60oC в течение 1 часа. В результате выщелачивания молибден переходит в раствор в форме парамолибдата аммония.

Частично переходит в раствор никель с образованием [Ni(NH3)4]O.

Окись ванадия образует нерастворимый в холодной воде ванадат аммония (NH4VO3). Суспензию охлаждают и фильтруют. Остаток на фильтре промывают 300 г воды. Фильтрат и промывные воды упаривают для удаления избытка аммиака до соотношения Mo: NH3 (массовое) = 1 : 0,176. Степень извлечения молибдена в раствор составляет - 85%, никеля - 36,5%, количество полученного раствора - 250 г. В полученном растворе содержится 15,5 г парамолибдата аммония (8,45 г Mo); 2,964 г Ni; 1,49 г аммиака. После разбавления раствора водой до 2,3 кг и введения дополнительного количества (2,7 г) парамолибдата аммония с отношением Mo : NH3 = 1 : 0,15 раствор используется в качестве исходного компонента катализатора при гидрогенизации новой порции (100 кг) остатка атмосферной разгонки нефти. Окончательное массовое соотношение Mo : NH3 составляет 1:0,15.

Золошлаковый остаток после извлечения молибдена (1) выщелачивают водой при 95-98oC, в результате чего ванадат аммония переходит в раствор. Суспензию в горячем виде фильтруют, упаривают и охлаждают. При охлаждении раствора образуются кристаллы ванадата аммония. Кристаллы отделяют от раствора фильтрацией и сушат Получают 38,9 г NH4VO3, что соответствует 80%-ному извлечению ванадия. Золошлаковый остаток (II) после извлечения молибдена и ванадия содержит благородные металлы и галлий в концентрациях, достаточных для осуществления их извлечения - табл. 4.

Для извлечения галлия золошлаковый остаток в количестве 100,3 г (в пересчете на сухое вещество) выщелачивают 200,6 г раствора, содержащего 40 г NaOH при температуре 90oC в течение 2,5 часов. Суспензию фильтруют. В фильтрат вводят порциями порошок металлического алюминия в количестве 12,3 г. В результате происходит цементация галлия с получением 0,22 г галлия, что соответствует извлечению 83%.

Золошлаковый остаток (III) после извлечения галлия, содержащий благородные металлы, является товарным продуктом и направляется на специализированные предприятия для их извлечения.

Пример 2. Состав исходного сырья - остатка атмосферной разгонки нефти тот же, что и в примере 1 (табл. 1).

Процесс приготовления катализатора осуществляют следующим образом. В 100 кг исходного сырья эмульгируют 2,3 кг раствора, содержащего: 182 г парамолибдата аммония, (100 г Mo), (4,99 г Ni) и 38,9 г аммиака. Эмульгирование проводят в дисковом диспергаторе с получением водных капель эмульсии с диаметрами от 0,3 до 5 мкм. В полученной эмульсии содержание молибдена на исходное сырье составляет 0,1%. Соотношение (массовое) Mo : Ni = 1: 0,05; Mo : NH3 = 1:0,39.

Приготовленную эмульсию подвергают гидрогенизации в проточном реакторе в условиях примера 1.

Катализатор образуется в процессе гидрогенизации, в виде суспензии частиц MoS2 с диаметром от 0,02 до 0,08 мкм, равномерно распределенных в реакционной зоне.

Выход и состав полученных в результате гидрогенизации продуктов приведен в табл. 5.

Фракции гидрогенизата с Т. кип. ниже 350oC могут быть использованы для получения моторных топлив.

В остаток гидрогенизации с T. кипения выше 350oC переходят ценные металлы, содержащиеся в исходном сырье, а также соединения металлов-катализаторов.

Для извлечения ценных металлов и регенерации катализатора остаток гидрогенизации с температурой кипения выше 350oC в количестве 21,44 кг сжигают в распыленном состоянии в опытном стендовом котлоагрегате, оборудованном рукавным фильтром для очистки дымовых газов от пыли. Коэффициент пылеулавливания - 99%. Процесс сжигания проводят с избытком воздуха 1,25. Температура в зоне горения - 1000-1200oC.

Уловленный фильтром зольный унос и твердые шлаковые остатки в количестве 279,7 г, собранные из котлоагрегата, имеют состав, приведенный в табл. 6.

Золошлаковые остатки в количестве 279,7 г обрабатывают 1400 г водного раствора, содержащего 11% NH3 и 6% (NH4)2CO3.

Условия выщелачивания аналогичны примеру 1.

Остаток на фильтре промывают 600 г воды. Фильтрат и промывные воды упаривают для удаления избытка аммиака до соотношения Mo : NH3 (массовое) = 1 : 0,43. Степень извлечения молибдена в раствор составляет - 90%, никеля - 43%, количество полученного раствора - 1520 г. В полученном растворе содержится 164 г парамолибдата аммония (90 г Mo); 4,99 г Ni; 38,9 г аммиака. После разбавления раствора водой до 2,3 кг и введения дополнительного количества (18,2 г) парамолибдата аммония раствор используется в качестве исходного компонента катализатора с отношением Mo : NH3 = 1 : 0,39 при гидрогенизации новой порции (100 кг) остатка атмосферной разгонки нефти. Дальнейшая переработка зольного остатка после извлечения молибдена и никеля осуществляется по примеру 1 с получением тех же самых результатов.

Пример 3. Состав исходного сырья тот же, что и в примере 1. Процесс проводится с использованием рециркулируемого остатка с температурой кипения выше 350oC.

К 100 кг остатка атмосферной разгонки нефти добавляют 31,14 кг рециркулирующего остатка гидрогенизации с Т.кип. > 350oC, получаемого в результате непрерывной гидрогенизации исходного сырья, что составляет 90% от выхода остатка гидрогенизации с Т.кип. > 350oC.

Состав остатка приведен в таблице 7.

В 13,41 кг рециркулирующего остатка содержится: 11,8 г Mo в форме MoS2 и 3,51 г Ni в форме NiS.

К полученной смеси добавляют 500 г водного раствора, содержащего: 2,36 г парамолибдата аммония (1,3 г Mo), 0,5 г NH3 и 0,39 г Ni, что соответствует массовым отношениям Mo : NH3 = 1 : 0,39 и Mo : Ni = 1 : 0,15. Водный раствор эмульгируют. Общее содержание молибдена в эмульсии - 13,1 г, что соответствует массовому соотношению 0,01% Mo на сырье плюс рециркулируемый остаток.

Гидрогенизацию проводят в условиях, аналогичных примеру 1. Состав жидких продуктов с Т. кип. < 350oC аналогичен составу продуктов, приведенному в табл. 2 примера 1. Состав остатка с Т.кип. выше 350oC приведен в табл. 7. Выход продуктов гидрогенизации приведен в табл. 8.

90% от массы остатка с Т.кип. > 350oC (31,14 кг) возвращают на смешение с сырьем; 10% от массы остатка (4,35 кг) сжигают аналогично примеру 1.

Золошлаковый остаток в количестве 145,5 г обрабатывают 291 г раствора, содержащего 3% (NH4)2CO3 и 7 мас.% аммиака. Условия выщелачивания, фильтрации и промывки аналогичны примеру 1. Упаренный и затем разбавленный до 500 г раствор содержит 1,17 г Mo, 0,39 г Ni и 0,19 г NH3, что соответствует массовому соотношению Mo : NH3 = 1 : 0,16. Этот раствор возвращают на смешение и эмульгирование для приготовления катализатора.

Дальнейшую переработку осадка после извлечения молибдена и никеля проводят в тех же условиях, что и в примере 1 с получением аналогичных результатов.

Состав зольного уноса, уловленного фильтром, приведен в табл. 9.


Формула изобретения

1. Способ переработки высокомолекулярного углеводородного сырья гидрогенизацией при повышенных температуре и давлении в присутствии катализатора, содержащего дисульфид молибдена, полученного из водного раствора соли молибденовой кислоты в присутствии сульфидирующего агента в углеводородной среде, отличающийся тем, что процесс гидрогенизации ведут при равномерном распределении в исходном сырье катализатора, полученного непосредственно в зоне реакции из эмульсии, образованной смешением исходного сырья с водным раствором, содержащим соль молибденовой кислоты, например, парамолибдат аммония, и аммиак, взятыми в массовом соотношении из расчета аммиак : молибден, равном 0,15 - 0,39 : 1, и имеющей диаметр капель 0,3 - 5 мкм, причем образующиеся в процессе гидрогенизации органические соединения с температурой кипения ниже 350oC отгоняют, а остаток с температурой кипения выше 350oC сжигают полностью или частично при температурах 800 - 1200oC и из полученных золошлаковых остатков извлекают катализатор в виде парамолибдата аммония, рециркулируемого в процесс, а также редкие и благородные металлы, содержащиеся в исходном сырье.

2. Способ по п.1, отличающийся тем, что используют исходное высокомолекулярное углеводородное сырье, включающее серусодержащие соединения, являющиеся сульфидирующим агентом и/или гидрогенизацию осуществляют водородсодержащим газом, содержащим сульфидирующий агент.

3. Способ по п.2, отличающийся тем, что для гидрогенизации используют газ, имеющий состав, мас.%: водород 19 - 80, окись углерода 0,02 - 3, метан 0,5 - 80, сероводород 1 - 10.

4. Способ по п.1, отличающийся тем, что катализатор вводят в количестве 0,01 - 0,1 мас.% молибдена на исходное сырье.

5. Способ по п.1, отличающийся тем, что в качестве катализатора используют дисульфид молибдена с добавкой сульфида металла - никеля и/или кобальта.

6. Способ по п.5, отличающийся тем, что катализатор дисульфид молибдена с добавкой сульфида металла - никеля и/или кобальта получают из эмульсии, образованной смешением исходного сырья и водного раствора, содержащего соединения молибдена и металла добавки, извлеченных из золошлаковых остатков, и аммиака при соотношении молибден : металл добавки, равном 0,05 - 0,3.

7. Способ по п.1 или 5, отличающийся тем, что используют катализатор с размером частиц 0,02 - 0,3 мкм.

8. Способ по п.1, отличающийся тем, что остаток гидрогенизации с температурой кипения выше 350oC в количестве 60 - 90 мас.% рециркулируют в процесс, смешивая с исходным сырьем, а 10 - 40 мас.% остатка направляют на сжигание.

9. Способ по п.1, отличающийся тем, что сжигание остатка гидрогенизации с температурой кипения выше 350oC ведут при избытке воздуха 5 - 25% от стехиометрического количества.

10. Способ по п.9, отличающийся тем, что твердые продукты, образующиеся в процессе сжигания остатка и уносимые дымовыми газами, улавливают фильтром с получением золы.

11. Способ по п.1, отличающийся тем, что для извлечения молибдена, никеля и/или кобальта золошлаковый остаток обрабатывают водным раствором, содержащим 7 - 11 мас.% аммиака и 3 - 6 мас.% карбоната аммония при массовом отношении золошлаковый остаток : раствор, равном 1 : 2 - 5, полученную суспензию фильтруют с образованием остатка и фильтрата, который упаривают или разбавляют водой с получением раствора с заданным содержанием молибдена и соотношением NH3 : Mo.

12. Способ по п.11, отличающийся тем, что остаток после извлечения молибдена, никеля и/или кобальта обрабатывают водой или маточником, образующимся после осаждения ванадата аммония, содержащим 1 - 1,5 мас.% аммиака при температуре 95 - 98oC, полученную суспензию отфильтровывают с получением остатка и фильтрата, из фильтрата в процессе охлаждения отделяют кристаллы ванадата аммония, полученный маточник используют для выщелачивания остатка, образующегося после извлечения молибдена, никеля и/или кобальта.

13. Способ по п.12, отличающийся тем, что остаток после извлечения ванадия обрабатывают 20%-ным едким натром при температуре 90 - 95oC при отношении жидкой и твердой фаз от 2 до 3, суспензию фильтруют, выделенный твердый остаток, содержащий благородные металлы, выводят из процесса в качестве товарного продукта, а из фильтрата цементацией металлическим алюминием извлекают галлий.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9

NF4A Восстановление действия патента Российской Федерации на изобретение

Извещение опубликовано: 27.11.2005        БИ: 33/2005



 

Похожие патенты:

Изобретение относится к процессам углубленной переработки нефти путем конверсии нефтяных фракций в присутствии водорода

Изобретение относится к области нефтепереработки и катализа процессов получения из тяжелого углеводородного сырья углеводородных фракций, используемых для получения жидких моторных топлив, а также в качестве сырья для производства растворителей, содержащих ароматические соединения

Изобретение относится к композициям катализатора гидрокрекинга, их получению и применению в процессе гидрокрекинга

Изобретение относится к катализатору, который включает в себя:- подложку, содержащую по меньшей мере один твердый кристаллический IZM-2, в рентгенограмме которого имеются по меньшей мере спектральные линии, записанные в таблице ниже, где FF = очень интенсивная; F = интенсивная; m = средняя; mf = умеренно слабая; f = слабая; ff = очень слабая, и который имеет химический состав, выраженный на безводное основание, в расчете на моли оксидов, отвечающие следующей общей формуле ХО2:aY2O3:bM2/ nO, в которой Х означает по меньшей мере один четырехвалентный элемент, Y означает по меньшей мере один трехвалентный элемент и М представляет собой по меньшей мере один щелочной металл и/или щелочноземельный металл, валентности n, а и b означают соответственно число молей Y2O3 и М2/n O, и а составляет от 0 до 0,5, а b составляет от 0 до 1, и - активную фазу, содержащую по меньшей мере один гидрирующий-дегидрирующий элемент группы VIB и/или по меньшей мере один гидрирующий-дегидрирующий неблагородный элемент группы VIII периодической системы, причем указанный катализатор является катализатором с сульфидированной фазой

Настоящее изобретение относится к способам переработки углеводородных масел в атмосфере водорода в присутствии дисперсных катализаторов и может быть использовано при переработке тяжелого углеводородного сырья (ТУС) в жидкие углеводородные продукты с более низкой температурой кипения, чем исходное сырье. Для гидроконверсии ТУС с получением жидких углеводородных смесей готовят водный раствор прекурсора катализатора на основе соединения молибдена, эмульгируют его в ТУС, смешивают подготовленное сырье, содержащее эмульгированный прекурсор катализатора, с водородсодержащим газом, нагревают полученную смесь до сульфидирования прекурсора катализатора, проводят гидроконверсию в восходящем потоке сырья и разделяют полученные продуктов в системе сепараторов. Предварительно определяют содержание в сырье остатка вакуумной дистилляции с температурой начала кипения в интервале 500-540°С - С0, содержание С, Н, N, S, О в сырье и С1, H1, N1, S1, O1 в асфальтенах, % мас. Исходя из полученных значений, рассчитывают объемную скорость сырья V, с-1, и температуру Т, К, по следующим формулам: , Fmax=-2,2961ϕ+91,565, где Fmax - предельное критическое значение глубины конверсии, при превышении которого гидроконверсия сопровождается образованием кокса, % мас., А - предэкспоненциальный множитель в уравнении Аррениуса, τ - время контакта, с, рассчитываемое по формуле: τ=1/V, Еа - энергия активации, Дж/моль, ϕ - характеристика сырья, рассчитываемая по формуле: ϕ=(δасф - δсреды)CR, δасф и δсреды - параметры растворимости Гильдебранда асфальтенов и среды соответственно, МПа0,5, рассчитываемые по уравнениям: δсреды=-0,0004 βсреды2 + 0,022 βсреды + 20,34, δасф=-0,0004 βасф2 + 0,022 βасф + 20,34, βсреды = 50(Н-0,125О- 0,2143N-0,0625S)/(0,0833C-1), βасф = 50(H1- 0,125O1- 0,2143N1-0,0625S1)/(0,0833C1-1). Для определения энергии активации Еа проводят два опыта гидроконверсии при двух различных значениях температуры Т1 и Т2, К, определяют содержание остатка вакуумной дистилляции с температурой начала кипения в интервале 500-540°С в продуктах гидроконверсии при температуре Т1 и Т2 - CT1 и СТ2 соответственно, % мас., рассчитывают константы скорости k1 и k2: k1=(lnC0 - lnCT1)/τ, k2=(lnC0 - lnCT2)/τ, и рассчитывают энергию активации по формуле: Еа=R (lnk2 - lnk1)/(1/T1 - 1/Т2), где R - универсальная газовая постоянная. Затем проводят гидроконверсию сырья при выбранных значениях V и Т, соответствующих Fmax. В варианте осуществления изобретения содержание С1, H1, N1, S1, O1 в асфальтенах не определяют, βасф не рассчитывают, а δасф принимают равным 20,3, рассчитывая ϕ по формуле: ϕ=(20,3 - δсреды)CR. Коксовое число CR могут определять расчетом по формулам: CR = 0,7998 α3 - 8,1347 α2 + 35,698 α - 43,251, α = С/6 - Н+N/14. Технический результат - достижение максимальной степени конверсии при минимальном коксообразовании простым способом с проведением малого числа опытов. 2 н. и 2 з.п. ф-лы, 9 табл., 4 пр., 5 ил.
Изобретение касается способа обработки ex-situ катализатора, содержащего, по меньшей мере, одну гидрирующую фазу и, по меньшей мере, один аморфный алюмосиликат или цеолит, содержащий кислотные центры. Способ включает: стадию введения азота контактированием при температуре меньше 100°С с по меньшей мере одним азотсодержащим соединением основного характера, которое представляет собой аммиак или соединение, разлагающееся с образованием аммиака, при этом указанное соединение вводят из расчета от 0,5 до 10% (в расчете на массу N), и стадию сульфирования/активации газом, содержащим водород и сероводород, при температуре, по меньшей мере, 250°С, причем эту стадию осуществляют перед стадией введения указанного азотсодержащего соединения, и полученный катализатор, возможно, сушат. Эта обработка дает возможность быстрого запуска, эффективного на установке гидрокрекинга. 2 н. и 12 з.п. ф-лы, 1 табл., 4 пр.

Изобретение относится к катализатору гидроочистки для обработки тяжелого углеводородного сырья, имеющего значительные концентрации ванадия, где упомянутый катализатор гидроочистки содержит: прокаленную частицу, содержащую совместно перемешанную смесь, приготовленную посредством совместного перемешивания неорганического оксидного порошка, порошка триоксида молибдена и частиц металла VIII группы и затем формования упомянутой совместно перемешанной смеси в частицу, которую прокаливают, чтобы тем самым получить упомянутую прокаленную частицу, где упомянутая прокаленная частица имеет такую структуру пор, что, по меньшей мере, 23% от общего объема пор упомянутой прокаленной частицы находится в виде пор упомянутой прокаленной частицы, имеющих диаметры пор больше чем 5000 ангстрем, и меньше чем 70% от общего объема пор упомянутой прокаленной частицы находится в виде пор упомянутой прокаленной частицы, имеющих диаметры пор в диапазоне от 70 до 250 , как измерено методом ртутной порометрии. При этом упомянутый порошок триоксида молибдена, используемый для приготовления упомянутой совместно перемешанной смеси, находится в тонкоизмельченном состояния триоксида молибдена в форме частиц, либо в виде тонкоизмельченного порошкообразного твердого вещества, либо в виде суспензии, где упомянутый триоксид молибдена в форме частиц имеет такой размер частиц, максимальное измерение которого находится в диапазоне от 0,2 до 150 мкм. При этом упомянутую стадию совместного перемешивания проводят таким образом, что упомянутая совместно перемешанная смесь имеет значение рН, которое поддерживают в диапазоне от 6 до 9. При этом прокаливание упомянутой частицы проводят при регулируемых температурных условиях, при температуре прокаливания в пределах от 482°С (900°F) до 787,7°С (1450°F) в течение периода времени прокаливания так, чтобы получить упомянутую прокаленную частицу, имеющую упомянутую структуру пор. При этом упомянутая прокаленная частица имеет содержание молибдена в диапазоне от 2 масс. % до 12 масс. %, причем массовый процент основывается на молибдене в виде МоО3 и общей массе упомянутой прокаленной частицы. Изобретение также относится к способу изготовления заявленного катализатора, а также к способу обработки тяжелого углеводородного сырья. Технический результат заключается в увеличении каталитической активности и стабильности катализатора. 3 н. и 12 з.п. ф-лы, 4 ил., 3 табл., 2 пр.
Наверх