Способ определения глубины залегания модифицированного приповерхностного слоя в полимерной пленке

 

Изобретение относится к технике газофазной химической модификации приповерхностного слоя полимерных пленок, в частности фоторезистных, и может быть использовано на операциях контроля фотолитографических процессов, а также любых других пленок, прозрачных в видимой области спектра на отражающих подложках. Сущность: предложенный способ определения глубины залегания модифицированного посредством процесса силилирования приповерхностного слоя осуществляется путем измерения концентрационно-зависимого параметра, по изменению которого судят об изменении глубины залегания слоя. При этом в качестве концентрационно-зависимого параметра выбирают показатель преломления облученного светом приповерхностного модифицированного слоя полимерной пленки. После чего определяют глубину залегания модифицированного слоя по формуле dм = d(nпл. - nэф.)/(nпл. - nм), где d - исходная толщина полимерной пленки; dм - глубина залегания модифицированного приповерхностного слоя; nпл - показатель преломления пленки после ее формирования; nм - показатель преломления полностью промодифицированной пленки; nэф - изменяющееся в процессе модифицирования и контролируемое эффективное значение показателя преломления пленки, и при достижении заданной величины dм прекращают процесс. Технический результат изобретения заключается в повышении качества процесса модифицирования полимерных пленок, в частности фоторезистных. 1 ил.

Изобретение относится к технике газо-фазной химической модификации приповерхностного слоя полимерных пленок, в частности, фоторезистных и может быть использовано на операциях контроля фотолитографических процессов, а также любых других пленок, прозрачных в видимой области спектра на отражающих подложках.

Проблема расширения функциональных возможностей фотолитографии с целью применения ее в субмикронной технологии особенно актуальна в настоящее время.

Формирование на поверхности полупроводниковых пластин фоторезистных масок с элементами субмикронных размеров при использовании однослойных фоторезистных пленок представляет собой исключительно трудную задачу вследствие дифракционных эффектов, недостаточной глубины фокуса оптических проекционных систем, отражения экспонирующего излучения от подложки, эффекта стоячих волн и т. д., ограничивающих разрешение.

Формирование же многослойной резистной маски имеет свои недостатки, в частности, заключающиеся в наличии дефектов в промежуточном слое, механических напряжений в системе в целом и высокой стоимости.

Поэтому предпочтительным в фотолитографии в последнее время является способ локальной химической модификации (способ силилирования), позволяющий формировать на поверхности полупроводниковой пластины квазидвухслойное маскирующее покрытие с субмикронными размерами элементов. Однако отсутствие способов контроля процесса модификации в настоящее время не позволяет получить воспроизводимые результаты.

Известный гравиметрический способ контроля процесса силилирования /1/ позволяет лишь судить о процессе силилирования. Способ основан на микровзвешивании пластины с пленкой фоторезиста до и после силилирования. По линейному характеру закона изменения массы внедренного в пленку кремния контролируют процесс силилирования. Способ не позволяет точно определить глубину силилирования. Однако, поскольку в процессе силилирования диффузия паров гексаметилдисилазана (ГМДС) происходит только в приповерхностный слой, то очень важно знать в каждый момент времени глубину проникновения их.

Наиболее близким по технической сущности и достигаемому результату является способ контроля газофазной химической модификации фоторезистов /2/. Согласно этому способу гравиметрический контроль осуществляют непосредственно при проведении процесса силилирования с помощью спутника, помещенного в камеру для силилирования и представляющего собой кварцевый резонатор, на поверхность которого предварительно наносят фоторезистную пленку. При этом частота резонатора меняется по мере насыщения поверхности пленки парами ГМДС.

Недостатки известного способа заключаются в следующем. Контроль процесса силилирования с помощью спутника является косвенным, при этом о процессе силилирования фоторезистной пленки судят по такому параметру, как частота кварцевого резонатора, на которую влияет температура, достаточно высокая (130-140oC). Поэтому при пересчете изменения частоты в изменение массы пленки нужно учитывать и этот переменный параметр. Кроме того, присутствие в камере для силилирования дополнительного предмета неизбежно приведет к нарушению ламинарности парогазовых потоков и нарушению равномерности температурных полей, что сказывается на качестве процесса силилирования. А так как спутник извлекают из рабочей камеры каждый раз после окончания процесса для снятия отработавшей фоторезистной пленки и нанесения новой и устанавливают в камере снова перед началом нового процесса, то это является неизбежным дополнительным источником загрязнения.

Заявляемое изобретение предназначено для определения глубины залегания модифицированного приповерхностного слоя в полимерной пленке непосредственно в процессе модифицирования, например силилирования, и при его осуществлении может быть существенно повышено качество процесса силилирования за счет контроля его продолжительности.

Поскольку диффузия ГМДС при силилировании идет как в экспонированные, так и в неэкспонированные пленки, например фоторезистные, то если процесс силилирования идет продолжительное время, то в процессе диффузии ГМДС переход от экспонированного слоя в пленке фоторезиста к неэкспонированному получается сильно размытым. Поэтому масса пленки, ее прирост, не может быть контролирующим параметром. С точки зрения качества процесса глубина диффузии (глубина залегания модифицированного приповерхностного слоя) является основным контролирующим параметром, поскольку именно она при последующей обработке пленки фоторезиста в плазме кислорода определяет толщину и качество защищающего фоторезистную маску оксида кремния.

Получаемый при осуществлении изобретения технический результат, а именно определение глубины залегания модифицированного приповерхностного слоя, достигается измерением концентрационно-зависимого параметра, по результатам изменения которого судят об изменении глубины залегания слоя. В качестве концентрационно-зависимого параметра выбирают показатель преломления облученного светом приповерхностного модифицированного слоя полимерной пленки. При этом глубину определяют по формуле: где d - исходная толщина пленки фоторезиста, dм - глубина залегания модифицированного приповерхностного слоя фоторезистной пленки, nпл - показатель преломления пленки фоторезиста после ее формирования, nм - показатель преломления полностью промодифицированной пленки, nэф - изменяющееся в процессе модифицирования и контролируемое эффективное значение показателя преломления пленки, и при достижении заданной величины dм прекращают процесс модифицирования.

Выбор в качестве контролирующего параметра показателя преломления и последующее определение глубины залегания модифицированного приповерхностного слоя является новым, неизвестным из уровня техники.

Предложенное техническое решение следует считать имеющим изобретательский уровень, так как оно не вытекает очевидным образом из уровня техники.

На фиг. 1 показана схема лабораторной установки газофазной химической модификации полимерных пленок, в частности установки силилирования фоторезистных пленок. Установка содержит рабочую камеру 1 для модифицирования пленок, в которой установлен держатель 2 с исследуемым образцом 3. Через дозатор 4 от источника 5 в рабочую камеру 1 направляют модифицирующий агент, например пары ГМДС. Для контроля процесса модифицирования в рабочую камеру встроен автоматический эллипсометр, включающий источник монохроматического излучения 6, деполяризатор 7, поляризатор 8, модулятор 9, вращающийся анализатор 10, фотоприемник 11, усилитель 12, самопишущий потенциометр 13.

Способ реализуют следующим образом. В рабочую камеру 1 помещают исследуемый образец 3 со сформированной пленкой. С помощью дозатора 4 в рабочую камеру направляют модифицирующий агент и осуществляют модификацию пленки известным образом. Поскольку показатель преломления полимерной пленки (например, для фоторезистной пленки n = 1,66...1,67) и модифицирующего агента (для ГМДС n = 1,408) существенно разнятся, то диффузия модифицирующего агента в пленку приводит к уменьшению эффективного значения показателя преломления и, как правило, к приращению ее толщины. При этом увеличивается и ее масса. Поэтому в качестве основного контролирующего параметра процесса модифицирования выбирают оптически измеряемый показатель преломления в отличие от массы в гравиметрическом способе контроля, что дает возможность применить автоматический эллипсометр, встроенный в рабочую камеру. Для чего излучение с заданными параметрами поляризации направляют на образец с нанесенной полимерной пленкой и в процессе модифицирования постоянно анализируют параметры отраженного поляризованного света, по изменению которых определяют изменение эффективного значения показателя преломления модифицированной пленки nэф. Затем определяют глубину залегания в пленке модифицированного приповерхностного слоя по формуле: где d - исходная толщина полимерной пленки, dм - глубина залегания модифицированного приповерхностного слоя пленки,
nпл - показатель преломления пленки после ее формирования,
nм - показатель преломления полностью промодифицированной пленки,
nэф - изменяющееся в процессе модифицирования и контролируемое эффективное значение показателя преломления пленки, и при достижении заданной величины dм прекращают процесс модифицирования.

В качестве примера взят оптический способ контроля процесса силилирования фоторезистных пленок. Для получения информации о глубине приповерхностного диффузионного слоя на кремниевой подложке формируют фоторезистную пленку толщиной порядка 0,2d, экспонируют ее сравнительно большой дозой УФ-излучения (300 мДж), т.е. заведомо полностью и на всю глубину, силилируют, и с помощью эллипсометра измеряют показатель преломления полностью силилированной пленки nм. Затем на кремниевой подложке формируют фоторезистную пленку необходимой толщины, например 1,5 мкм, экспонируют ее сравнительно малой дозой УФ-излучения (100 мДж) и помещают в камеру для силилирования. Направляют на кремниевую пластину с частично экспонированной пленкой фоторезиста поляризованный луч с заданными параметрами поляризации и в процессе проведения силилирования пленки фоторезиста анализируют параметры отраженного от пластины с пленкой поляризованного света, по которым определяют эффективное значение показателя преломления пленки фоторезиста nэф. Полученные экспериментально значения nэф непосредственно в процессе силилирования позволяют непрерывно определять глубину диффузии ГМДС в приповерхностный слой экспонированной пленки фоторезиста по формуле:

где d - исходная толщина пленки фоторезиста,
dс - глубина диффузии в приповерхностный слой фоторезистной пленки,
nпл - показатель преломления пленки фоторезиста после ее формирования,
nс - показатель преломления полностью просилилированной пленки,
nэф - изменяющееся в процессе силилирования и контролируемое эффективное значение показателя преломления пленки, и при достижении заданной величины dс прекращают процесс силилирования.

Таким образом, способ позволяет повысить качество процесса силилирования, потому что именно продолжительность процесса силилирования определяет профиль распределения концентрации кремния в приповерхностном слое фоторезистной пленки. Так как, чем дольше проводить процесс силилирования, тем глубже проникают молекулы ГМДС в фоторезистную пленку, размывая переход от насыщенного ГМДС приповерхностного слоя к ненасыщенному слою пленки фоторезиста.

Источники информации
1. Боков Ю.С. и др. Исследование механизма локального химического модифицирования пленок фоторезистов на примере силилирования гексаметилдисилазанов. Электронная техника. Сер. 3. Микроэлектроника, - 1991 - Вып. I (140), с. 17 -25.

2. Валиев К.А. и др Фотолитографические процессы с использованием газофазной химической модификации фоторезистов. Сб.: Проблемы микроэлектронной технологии. - М.: Наука, 1992, с. 100.


Формула изобретения

Способ определения глубины залегания в полимерной пленке, в частности фоторезистной, модифицированного приповерхностного, например, силилированного слоя путем измерения концентрационно-зависимого параметра, по изменению которого судят об изменении глубины залегания слоя, отличающийся тем, что в качестве концентрационно-зависимого параметра выбирают показатель преломления облученного светом упомянутого приповерхностного модифицированного слоя полимерной пленки, при этом его глубину определяют по формуле

где d - исходная толщина полимерной пленки;
dм - глубина залегания модифицированного приповерхностного слоя;
nпл - показатель преломления пленки после ее формирования;
nм - показатель преломления полностью промодифицированной пленки;
nэф - изменяющееся в процессе модифицирования и контролируемое эффективное значение показателя преломления пленки,
и при достижении заданной величины dм процесс прекращают.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к микролитографии как одной из важнейших стадий технологии микроэлектроники и предназначено для формирования резистных масок

Изобретение относится к технике полупроводникового производства и может быть использовано в фотолитографии, например, при определении момента окончания процесса проявления пленки фоторезиста

Изобретение относится к микроэлектронике и может быть использовано в производстве фоторезистов или в процессах фотолитографии для производства интегральных микросхем (ИМС)
Изобретение относится к технологии микроэлектроники

Изобретение относится к области обработки материалов и может быть использовано при производстве полупроводниковых приборов и интегральных схем, в частности на операциях фотолитографии
Изобретение относится к технологии микроэлектроники

Изобретение относится к технологии микроэлектроники и может быть использовано при создании устройств на основе сверхпроводящих материалов

Изобретение относится к контрольно-измерительной технике технологических процессов производства изделий микроэлектроники, в частности к контролю фотолитографических процессов с использованием газофазной химической модификации приповерхностного слоя пленок фоторезистов
Изобретение относится к технологии изготовления полупроводниковых приборов, в частности к способам удаления слоя фоторезиста с поверхности кремниевых подложек методом плазмохимического травления
Изобретение относится к технологии изготовления полупроводниковых приборов, в частности к удалению резистивной маски с поверхности кремниевых пластин после фотолитографических операций
Изобретение относится к способам допроявления фоторезистов и может быть использовано в области микроэлектроники интегральных пьезоэлектрических устройств на поверхностных акустических волнах (фильтры, линии задержки, резонаторы)

Изобретение относится к способу освещения, по меньшей мере, одной среды для быстрого прототипирования (СБП), в котором указанное освещение осуществляют, по меньшей мере, двумя одновременно индивидуально модулируемыми световыми пучками (ИМСП), проецируемыми на указанную среду для быстрого прототипирования (СБП), и в котором указанную среду для быстрого прототипирования освещают световыми пучками (ИМСП), имеющими, по меньшей мере, два различных содержания длин волн (СДВ1, СДВ2)
Изобретение относится к области микроэлектроники, в частности к микроэлектронике интегральных пьезоэлектрических устройств на поверхностных акустических волнах (фильтры, линии задержки и резонаторы), которые находят широкое применение в авионике и бортовых системах

Изобретение относится к процессам формирования (синтеза) трехмерных объектов произвольной формы с использованием технологии интерференционной литографии

Изобретение относится к области обработки полимерных материалов и касается способа термического проявления фотоотверждаемой заготовки печатной формы для получения рельефной растровой структуры. Заготовка содержит слой основы, фотоотверждаемый слой и удаляемый лазером масочный слой, расположенный поверх фотоотверждаемого слоя. Способ включает удаление лазером части масочного слоя, ламинирование кислородонепроницаемой мембраны поверх масочного слоя, экспонирование заготовки актиничным излучением через кислородонепроницаемую мембрану и масочный слой для избирательного сшивания и отверждения частей фотоотверждаемого слоя. Затем производят удаление кислородонепроницаемой мембраны и осуществляют термическое проявление для удаления масочного слоя и неотвержденных частей фотоотверждаемого слоя. Варианты способа предусматривают использование вместо удаляемого лазером масочного слоя негативной маски, а также использование негативной маски в качестве кислородонепроницаемого слоя. Технический результат заключается в повышении качества получаемой растровой структуры. 3 н. и 45 з.п. ф-лы, 1 табл., 19 ил.
Наверх