Водородный стандарт частоты

 

Стандарт предназначен для использования в качестве источника высокостабильных сигналов. Водородный стандарт частоты включает водородный генератор, кварцевый генератор и систему фазовой автоподстройки частоты (ФАПЧ) кварцевого генератора по сигналу водородного генератора. Для настройки частоты резонатора водородного генератора на вершину спектральной линии использован метод периодической модуляции добротности линии. Блок автоматической настройки резонатора через ключевое устройство подключен к выходу фазового детектора системы ФАПЧ. Блок автоматической настройки резонатора содержит последовательно соединенные селективный фильтр, аналого-цифровой преобразователь, цифровой синхронный детектор и цифроаналоговый преобразователь. Синхронный детектор выполнен программным. Это вместе с выделением сигнала расстройки резонатора из цепи управления частотой кварцевого генератора позволяет исключить из состава системы автоматической настройки резонатора вспомогательный водородный генератор и создать стандарт с малой относительной нестабильностью частоты. 1 з.п. ф-лы, 4 ил.

Изобретение относится к квантовым водородным стандартам частоты и может быть использовано при разработке и проектировании водородных стандартов частоты с автоматической подстройкой частоты резонатора квантового генератора.

Особенностью водородных стандартов частоты является необходимость надстройки частоты СВЧ-резонатора квантового генератора на вершину спектральной линии излучения атомов водорода. Нестабильность частоты СВЧ-резонатора является основной причиной, определяющей нестабильность частоты стандарта на длительных интервалах времени (более 1 суток).

Устройства, осуществляющие автоматическую настройку резонатора квантового генератора в водородных стандартах частоты, известны ("Кварцевые и квантовые меры частоты". Под ред. Б.И.Макаренко, Министерство обороны СССР, 1989, С 369 - 377).

Для настойки частоты резонатора на вершину линии излучения атомов водорода используется метод модуляции добротности линии путем изменения интенсивности атомного пучка, инжектируемого в СВЧ-резонатор, или наложением на область взаимодействия атомов с полем СВЧ-резонатора неоднородного магнитного поля.

При изменении добротности линии в водородном генераторе возникает эффект затягивания частоты, который при расстройке частоты СВЧ-резонатора относительно водородной линии приводит к изменению частоты генерации.

Периодическая модуляция добротности линии приводит к модуляции частоты настраиваемого генератора. Критерием настройки генератора является исчезновение частотной модуляции.

Для повышения точности настройки СВЧ-резонатора обычно используют два водородных генератора (один - настраиваемый, второй - опорный) и устройство сравнения их частот (частотный компаратор). Точность настройки определяется эффективностью модуляции добротности линии излучения и погрешностью измерения разностной частоты и достигает величины 510-14 - 510-15 (по выходной частоте водородного стандарта).

Наилучшие результаты получаются при использовании цифровой системы автоматической настройки резонатора (АНР). В основе ее работы лежит рассмотренный модуляционный метод. При настройке СВЧ-резонатора система производит сравнение частот настраиваемого водородного генератора при двух значениях добротности спектральной линии, которая зависит, например, от интенсивности пучка. В зависимости от величины и знака полученной разности частот система АНР корректирует значение частоты СВЧ-резонатора изменением напряжения смещения варикапа, управляющего частотой резонатора.

Аналогично работает система АНР в водородном стандарте частоты и времени типа Ч1-75, взятая в качестве ближайшего аналога изобретения (проспект "Стандарт частот и времени водородный" Ч1-75; "Кварцевые и квантовые меры частоты". Под ред. Б.И.Макаренко. Министерство обороны СССР, 1989, с. 369 - 377). При настройке резонатора осуществляется модуляция добротности спектральной линии водородного генератора. Реверсивный счетчик в течение 100 с считает период биений двух сигналов в прямом направлении при одной добротности спектральной линии и в течение 100 с в обратном направлении при другой добротности. Разность результатов счета в прямом и обратном направлениях пропорциональна расстройке частоты резонатора водородного генератора от вершины спектральной линии. Информация о величине и знаке расстройки преобразуется цифроаналоговым преобразователем в напряжение, которое подается на варикап водородного генератора, корректируя его частоту.

Недостатком вышеописанного водородного стандарта частоты является то, что настраивать резонатор невозможно без вспомогательного водородного генератора.

Известны водородные генераторы, для настройки которых не требуется дополнительный водородный генератор ("Стандарты частоты и времени на основе квантовых генераторов и дискриминаторов". Под ред. Б.П.Фатеева. М., "Сов. радио", 1978, с. 202). Работа системы настройки водородного генератора в них основана на модуляции варикапом частоты настойки резонатора (а не добротности спектральной линии). Частота модуляции составляет ~30 Гц. Система АНР выделяет сигнал амплитудной модуляции, который подается на синхронный детектор. Сигнал ошибки с синхронного детектора используется для коррекции частоты резонатора, если он отличается от частоты спектральной линии. Однако данный стандарт частоты имеет большую нестабильность частоты (610-13 от 100 с до 1 суток), частота генератора может отличаться от частоты спектральной линии ~ ~ на 510-12, имеется зависимость частоты настройки от характеристик варикапов и т.д.

Технической задачей, решение которой достигается изобретением, является создание водородного стандарта частоты с малой относительной нестабильностью частоты, что позволяет его использовать в качестве источника высокостабильных сигналов для времячастотных измерений и для работы в эталонных средствах измерения, а также исключить из состава его системы АНР вспомогательный водородный генератор, т.е. снизить стоимость стандарта.

Сущность технического решения заключается в том, что в водородном стандарте частоты, включающем водородный генератор, кварцевый генератор и систему фазовой автоподстройки частоты (ФАПЧ) кварцевого генератора по сигналу водородного генератора и использующем для настройки частоты СВЧ-резонатора на вершину спектральной линии метод периодической модуляции добротности линии, сигнал расстройки частоты СВЧ-резонатора водородного генератора выделяется из цепи управления частотой кварцевого генератора в системе ФАПЧ.

Для этого в водородном стандарте частоты, содержащем соединенные в кольцо кварцевый генератор, синтезатор частот и фазовый детектор, подключенный ко второму входу фазового детектора преобразователь частоты, к одному из входов которого подключен водородный генератор, а другой вход подключен к выходу кварцевого генератора, блок автоматической настройки резонатора водородного генератора, один выход которого соединен с резонатором, а другой выход соединен с модулятором водородного генератора, а вход блока автоматической настройки резонатора подключен к выходу фазового детектора, кварцевый генератор подключен к преобразователю частоты через умножитель частоты, а фазовый детектор подключен через ключевое устройство к блоку автоматической настройки резонатора, включающем последовательно соединенные селективный фильтр, аналого-цифровой преобразователь, цифровой синхронный детектор и цифроаналоговый преобразователь.

На фиг. 1 приведена структурная схема устройства, на фиг. 2 приведены эпюры, поясняющие работу блока АНР устройства.

Устройство содержит квантовый водородный генератор 1, подключенный к первому входу преобразователя частоты 2, выход которого соединен с одним из входов фазового генератора 3, выход которого соединен со входом кварцевого генератора 4, подключенного к перестраиваемому синтезатору частоты 5. Выход синтезатора 5 подключен к другому входу фазового детектора 3. На второй вход преобразователя частоты 2 подключен кварцевый генератор 4 через умножитель частоты 6. На выходе фазового детектора 3 через ключевое устройство 8 подключен также блок АНР 7, один выход которого соединен с варикапом СВЧ-резонатора водородного генератора 1, а второй выход соединен со входом модулятора добротности линии водородного генератора. Блок АНР 7 содержит последовательно соединенные: селективный фильтр с усилителем 9, аналого-цифровой преобразователь (АЦП) 10, цифровой синхронный детектор 11 и цифроаналоговый преобразователь 12.

Устройство работает следующим образом.

Преобразователь частоты 2 обеспечивает перенос частоты 1,42 ГГц сигнала, генерируемого водородным генератором 1, на частоту 405 кГц фазового детектора 3. В качестве опорного сигнала для преобразователя 2 используется сигнал 5 МГц кварцевого генератора 4, прошедший через умножитель частоты 6.

Перестраиваемый синтезатор частоты 5 используется для формирования сигнала сравнения, подаваемого на фазовый детектор 3. Синтезатор 5 обеспечивает дискретную электронную перестройку выходных частот водородного стандарта. Сигнал с выхода фазового детектора 3 используется для управления частотой 5 МГц кварцевого генератора 6. Из этой же цепи выделяется сигнал, используемый для подстройки частоты СВЧ-резонатора на вершину спектральной линии излучения водорода.

Подстройка частоты СВЧ-резонатора осуществляется следующим образом.

Для настройки частоты СВЧ-резонатора в водородном генераторе осуществляется циклическая (с периодом 20 с) модуляция добротности спектральной линии излучения атомов водорода. Модуляция добротности осуществляется двумя способами: изменением интенсивности пучка возбужденных атомов водорода, инжектируемых в СВЧ-резонатор или наложением неоднородного магнитного поля на накопительную колбу СВЧ-резонатора.

Изменение частоты генерации водородного генератора 1, вызванное модуляцией добротности спектральной линии атомов водорода, детектируется системой фазовой автоподстройки (блоки 2, 6, 3, 5) кварцевого генератора 4 и в цепи управления частотой кварцевого генератора подавляется периодический сигнал, синхронный с модуляцией добротности линии. Этот сигнал поступает на блок АНР 7, в котором формируется управляющее напряжение для подстройки варикапа СВЧ-резонатора водородного генератора 1. Сигнал с выхода фазового детектора 3 через ключевое устройство 8 (запирающееся на время переходного процесса, появляющегося в системе ФАПЧ в момент переключения добротности линии) и селективный усилитель-фильтр 9, настроенный на частоту модуляции добротности линии, поступает на АЦП 10. Оцифрованный сигнал расстройки резонатора поступает в цифровой синхронный детектор 11, в котором осуществляется синхронное детектирование сигнала с накоплением результатов (500 - 4000 циклов измерений N, в зависимости от величины расстройки частоты резонатора). Процесс формирования управляющего напряжения поясняется фиг. 2.

Как видно из фиг. 2, измерения напряжения с выхода фазового детектора производятся в конце каждого полуцикла модуляции добротности линии. В течение 4,4 с с интервалом в 110 мс определяются 40 значений напряжения. Для повышения точности каждое из указанных значений определяется путем статистической обработки 20 последовательных измерений, выполненных в течение примерно 1 мс. Статическая обработка сводится к вычислению "робастной" оценки среднего значения измерений VQ max (VQ min), заключающемуся в отбрасывании измерений, выходящих за границу 1,5 среднеквадратичного отклонения. Полученные значения суммируются. Сигнал ошибки (величина, пропорциональная расстройке резонатора) вычисляется по формуле: Накопление результатов производится в течение Nmax = 500 - 4000 циклов (Рабинер Л. Гоулд Б. Теория и применение цифровой обработки сигналов. М.: Мир, 1978): EN+1 = EN(1 - 1/Nmax) + Eцикл.

По истечении времени накопления производится коррекция кода, подаваемого на ЦАП 12 и, следовательно, частоты настройки резонатора: ЦАП = ЦАП - E/K, где K - коэффициент, определяемый крутизной перестройки резонатора.

Схема алгоритма работы блока 11 приведена на фиг. 3а, б.

Описываемый процесс накопления и обработки сигнала ошибки и управления частотой резонатора позволяет получить высокую стабильность частоты водородного стандарта (не более 210-15 за сутки) при наличии в структуре водородного стандарта частоты только одного водородного генератора.

Схемное выполнение блоков 1 - 6 аналогично выполнению соответствующих блоков стандарта частоты водородного типа Ч1-75.

Цифровые элементы, применяемые в данном стандарте, широко известны (Вениаминов В.Н. и др. Микросхемы и их применение. М.: Радио и связь, 1989).

Так в блоке 8 используются микросхемы типа 590КН1, в блоке 9 - типа 544УД1, в блоке 10 - типа АД7851, в блоке 12 - типа АД 7243.

Выполнение блока 11 также известно, например, из радиолокационной технике, где используются схемы выделения известных сигналов на фоне шумов. Эффективнее выполнение блока 11 программным, используя для этого компьютер, например, типа Pentium.

Промышленная применимость.

Предлагаемый квантовый водородный стандарт частоты может быть использован в качестве источника высокостабильных сигналов для времячастотных измерений и для работы в эталонных, образцовых и рабочих средствах измерения.

Стандарт может использоваться как самостоятельно, так и в составе автоматизированных измерительных комплексов.

Предусмотрена возможность дистанционного управления стандартом и диагностики его состояния через линии связи Internet.

Основные области применения стандарта: системы хранения точного времени, радионавигация, радиоастрономия и научные исследования.

Формула изобретения

1. Водородный стандарт частоты, содержащий соединенные в кольцо кварцевый генератор, синтезатор частот и фазовый детектор, подключенный к второму входу фазового детектора преобразователь частоты, к одному из входов которого подключен водородный генератор, а другой вход подключен к выходу кварцевого генератора, блок автоматической настройки резонатора водородного генератора, один выход которого соединен с резонатором, другой выход - с модулятором водородного генератора, а вход подключен к выходу фазового детектора, отличающийся тем, что кварцевый генератор подключен к преобразователю частоты через умножитель частоты, а фазовый детектор подключен через ключевое устройство к блоку автоматической настройки резонатора, включающему последовательно соединенные селективный фильтр, аналого-цифровой преобразователь, цифровой синхронный детектор и цифроаналоговый преобразователь.

2. Водородный стандарт частоты по п.1, отличающийся тем, что синхронный детектор выполнен программным.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4

MM4A - Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 26.08.2007

Извещение опубликовано: 10.03.2009        БИ: 07/2009




 

Похожие патенты:

Изобретение относится к квантовой электронике и может быть использовано в квантовых стандартах частоты с ячейкой поглощения

Изобретение относится к технике стабилизации частоты и может быть использовано в квантовых стандартах частоты пассивного типа

Изобретение относится к технике квантовых стандартов частоты

Изобретение относится к атомным стандартам частоты

Изобретение относится к квантовой электронике и может быть использовано в квантовых стандартах частоты на газовой ячейке

Изобретение относится к квантовым стандартам частоты пассивного типа и может быть использовано в рубидиевых стандартах частоты с принудительной подстройкой частоты стандарта

Изобретение относится к области электротехники и может быть использовано, например, в метрологии для определения частоты и времени, в частности при создании атомных стандартов частоты или в атомных часах

Изобретение относится к способам получения малогабаритных атомных ячеек с парами атомов щелочных металлов и к устройствам для их изготовления и может быть использовано при изготовлении квантовых магнитометров и малогабаритных атомных часов. Способ изготовления атомных ячеек включает нагрев окна и торца заготовки ячейки, приварку окна к одному из торцов заготовки и их отжиг излучением CO2-лазера, термообработку заготовки, откачку и последующее заполнение парами щелочного металла в вакууме. Затем напыленный металл со стенок заготовки испаряют CO2-лазером и герметизируют ячейку путем установки прозрачного окна на втором торце заготовки ячейки и его приварки к торцу лазером. Устройство для заполнения ячеек щелочным металлом включает вакуумную камеру, насосы, лазерную систему. Вакуумная камера содержит карусель с гнездами, нагреватель заготовок, механизм укладки крышек, окно, прозрачное для лазерного излучения. Изобретение позволяет получать миниатюрные атомные ячейки с улучшенными светопропусканием и эксплуатационными свойствами, позволяет экономить изотоп щелочного металла. 2 н. и 5 з.п. ф-лы, 3 ил.

Пассивный водородный стандарт частоты предназначен для использования в качестве источника высокостабильных сигналов. Стандарт частоты включает квантовый дискриминатор 1 с петлей связи 2 перестройки частоты его резонатора, преобразователь частоты 3, амплитудный детектор 4, фазовращатели 5, 13, синхронные детекторы 6, 14, кварцевый генератор 7, модулятор 8, генератор модулирующей частоты 9, умножитель частоты 10, генератор гармоник 11, перестраиваемый синтезатор частоты 12, генератор прямоугольных импульсов 15 и цифро-аналоговый преобразователь 16, выход которого соединен с петлей связи 2 для перестройки частоты резонатора квантового дискриминатора 1, а второй его вход подключен к выходу синхронного детектора 14, выполненного цифровым и вторым входом соединенного со вторым выходом генератора прямоугольных импульсов 15. Техническим результатом заявленного изобретения является уменьшение температурного коэффициента частоты прибора (1÷2×10-15/°С) и соответственно улучшение стабильности частоты на времени усреднения 1 сутки до значений (1.5÷2)×10-15. 3 ил.

Изобретение относится к атомным стандартам частоты

Изобретение относится к квантовой радиофизике

Изобретение относится к квантовым стандартам частоты пассивного типа и может быть использовано в рубидиевых стандартах частоты с принудительной подстройкой частоты стандарта
Наверх