Система для измерения расхода жидкости

 

Изобретение относится к измерению расхода жидкостей в безнапорных канализационных системах и может быть использовано для коммерческого учета объема сточных вод, сбрасываемых в городскую канализационную сеть. В канализационном колодце перед тонкостенным водосливом расположены датчик контроля уровня жидкости и устройство гашения скорости потока, выполненное в виде сетки, или цилиндров, или стержней. Датчик уровня подключен к устройству приема и обработки информации, содержащему АЦП, блок временной развертки и вычислительный блок. Изобретение обеспечивает повышение точности измерения расхода. 3 ил.

Изобретение относится к технике измерения расхода жидкости, в частности к измерению расхода жидкостей в безнапорных канализационных системах, и может быть использовано при необходимости коммерческого учета объема сточных вод, сбрасываемых потребителями в городскую канализационную сеть.

Известно устройство для регулирования расхода (см. заявку Франции N 2454606, кл. G 01 F 1/05, 1983 г.), содержащее расходомер, имеющий регистрирующую деталь в виде диска, несущего цифровые символы. Дополнительно введена деталь в виде другого диска, на котором нанесены символы, представляющие собой нелинейную функцию расхода, например высоту воды над треугольным водосливом. Положение регистрирующей детали, считываемое датчиком, изменяется с входным сигналом. Цифровые символы размещены на регистрирующей детали так, что выходные сигналы датчика индуцируют расход. Входная деталь может представлять собой вал, соединенный с поплавком.

Недостатками известного устройства являются следующие: основные части конструкции построены на механических элементах и узлах, отсутствуют блоки, позволяющие интегрировать во времени текущий расход воды. Это снижает точность измерения текущего расхода и функциональные возможности устройства.

Известен водомер-интегратор (см. авт. свид. СССР N 446756, кл. G 01 F 1/04, опуб. 15.10.74 г., бюл. N 38), содержащий поплавковую систему, интегрирующий узел, указатель уровней и расходов импульсов. При этом интегрирующий узел водомера выполнен в виде металлических стержней, длина которых соответствует кривой зависимости расхода от уровня.

Недостатком известного водомера-интегратора является то, что аппаратная функция расхода жидкости задается механическими средствами - металлическими стержнями разной длины, т. е. происходит только ее фиксация. Это снижает точность измерения интегральных (во времени) расходов жидкости. Кроме этого, известный водомер-интегратор невозможно использовать в условиях городской канализационной системы, а также отсутствует возможность передачи интегральных значений расходов жидкости в электронно-вычислительную машину (ЭВМ) или в телемеханику (ТМ). Это снижает функциональные возможности устройства и быстродействие системы.

Наиболее близким техническим решением является система для измерения расхода жидкости в безнапорных канализационных системах (см. патент США N 4344329, кл. G 01 F 1/52, 1982 г.), содержащая размещенные в канализационном колодце по меньшей мере два датчика контроля уровня жидкости, расположенные в разных точках измерительной системы, выходы которых подключены ко входу устройства приема и обработки информации, содержащего аналого-цифровой преобразователь (АЦП), блок временной развертки, подключенный ко входу разрешения преобразования АЦП, и вычислительный блок, подключенный к выходу АЦП, при этом информационный выход устройства приема и обработки информации подключен ко входу блока индикации, а датчик контроля уровня жидкости, АЦП, блок временной развертки и вычислительный блок подключены к источнику питания.

В известной системе для измерения расхода жидкости необходимо произвести два измерения в разных точках конструктивной системы (канала) соответственно двумя датчиками контроля уровня жидкости. Это приводит к усложнению конструкции измерительной системы и не позволяет определить мгновенный расход жидкости за счет разнесения датчиков в пространстве из-за присутствия временной задержки сигнала между показаниями сигнала первого и второго датчиков. За счет этого снижается точность измерения расхода потока жидкости через водослив. Кроме того, процесс вычисления расхода жидкости в известной системе требует выполнения определенных математических операций в соответствии с заданным алгоритмом, на что требуется затрата времени, ограничивающая скорость измерения мгновенного расхода. Это снижает быстродействие измерения расхода безнапорного потока жидкости.

Техническая задача, на решение которой направлено изобретение, состоит в повышении быстродействия и точности измерения расхода безнапорного потока жидкости в условиях канализационной сети.

Для решения указанной задачи система для измерения расхода жидкости в безнапорных канализационных системах, содержащая размещенный в канализационном колодце датчик контроля уровня жидкости, выход которого подключен ко входу устройства приема и обработки информации, содержащего АЦП, блок временной развертки, подключенный ко входу разрешения преобразования АЦП, и вычислительный блок, подключенный к выходу АЦП, при этом информационный выход устройства приема и обработки информации подключен ко входу блока индикации, а датчик контроля уровня жидкости, АЦП, блок временной развертки и вычислительный блок подключены к источнику питания, согласно изобретению, дополнительно содержит устройство гашения скорости потока жидкости, расположенное в канализационном колодце перед водосливом и выполненное в виде сетки, или цилиндров, или стержней.

Введение в систему устройства гашения скорости потока жидкости и его размещение перед тонкостенным водосливом по движению потока жидкости снижает составляющую скорости потока, перпендикулярную водосливу, а также уменьшает турбулентность потока. Это приводит к уменьшению погрешности коэффициентов истечения (через тонкостенный водослив), что в конечном итоге позволяет повысить точность измерения расхода жидкости.

Преобразование входного сигнала с датчика контроля уровня жидкости в величину объема жидкости, прошедшей через тонкостенный водослив за интервалы времени, задаваемые блоком временной развертки, и табулирование аппаратной функции в микросхеме постоянной памяти вычислительного блока приводит к отсутствию прямых математических расчетов, что позволяет повысить быстродействие измерения расхода жидкости. Выполнение устройства гашения скорости потока жидкости в виде сетки, или цилиндров, или стержней позволяет, изменяя количество или форму гасящих элементов, обеспечить соответствие нормированным метрологическим показателям, касающимся спокойного режима течения потока, а именно числу Фруда, которое служит критерием, определяющим границы спокойного и бурного течений, и для тонкостенных водосливов должно удовлетворять условию Fr 0,6 (см., например, Лобачев П.В., Шевелев Ф.А. Измерение расхода жидкостей и газов в системах водоснабжения и канализации. - М.: Стройиздат, 1985, с. 305).

Изобретение поясняется чертежами, где на фиг. 1 представлена функциональная схема системы для измерения расхода жидкости; на фиг. 2 схематически изображен канализационный колодец, в котором размещены тонкостенный водослив, направляющая труба с датчиком контроля уровня жидкости и устройство гашения скорости потока жидкости, вид сверху; на фиг. 3 - разрез А-А на фиг. 2.

Чертежи имеют следующие цифровые обозначения: 1 - датчик контроля уровня жидкости; 2 - направляющая труба, размещенная в канализационном колодце; 3 - канализационный колодец; 4 - устройство гашения скорости потока жидкости; 5 - тонкостенный водослив, размещенный в канализационном колодце 3; 6 - устройство приема и обработки информации; 7 - блок индикации; 8 - аналого-цифровой преобразователь; 9 - блок временной развертки; 10 - вычислительный блок; 11 - источник питания; 12 - входная труба в канализационный колодец; 13 - выходная труба из канализационного колодца.

Система для измерения расхода жидкости содержит датчик контроля уровня жидкости 1, размещенный в направляющей трубе 2, помещенной, например, в канализационный колодец 3, устройство гашения скорости потока жидкости 4, расположенное перед тонкостенным водосливом 5 по движению потока жидкости, устройство приема и обработки информации 6 и блок индикации 7.

Выход датчика контроля уровня жидкости 1 подключен ко входу устройства приема и обработки информации 6, информационный выход которого подключен ко входу блока индикации 7.

Устройство приема и обработки информации 6 содержит аналого-цифровой преобразователь (АЦП) 8, блок временной развертки 9 и вычислительный блок 10. При этом вход разрешения преобразования АЦП 8 подключен к выходу блока временной развертки 9, а выход АЦП 8 - к вычислительному блоку 10. Датчик контроля уровня жидкости 1, блок индикации 7, АЦП 8, блок временной развертки 9 и вычислительный блок 10 подключены к источнику питания 11.

В канализационном колодце 3, имеющем входную 12 и выходную 13 трубы, размещен тонкостенный водослив 5, рассчитываемый в соответствии с нормативным документом "Правила измерения расхода жидкости при помощи стандартных водосливов и лотков" (РДП 99-77) или выпущенным взамен нормативным документом МИ 2122-90. Тонкостенный водослив 5 может быть выполнен с прямоугольным, или треугольным, или трапецеидальным, или другим вырезом, обеспечивающим заданную зависимость уравнения расхода Q = f(h) (см., например, П. В.Лобачев, Ф.А.Шевелев, Измерение расхода жидкостей и газов в системах водоснабжения и канализации. - М.: Стройиздат, 1985, с. 302-315).

Датчик контроля уровня жидкости может быть выполнен поплавковым (см., например, П. В. Лобачев, Ф.А.Шевелев. Измерение расхода жидкостей и газов в системах водоснабжения и канализации. - М.: Стройиздат, 1985, с. 336, рис. 13.3) или ультразвуковым (см. там же, с. 343, рис. 13.8).

Устройство гашения скорости потока жидкости может быть выполнено в виде, например, пластин 4, вертикально закрепленных на дне колодца 3, или сетки, или стержней, или цилиндров, изготовленных из материала, не коррозирующего в измеряемой жидкости, или имеющих защитное антикоррозионное покрытие. Количество гасящих элементов устройства определяется скоростью потока подходящей жидкости и ее расходом.

В качестве АЦП 8 могут быть применены традиционные схемы преобразования аналогового сигнала в цифровой код, используемые в измерительной технике (см., например, Шляндин В.М. Цифровые измерительные устройства. - М.: Высшая школа, 1981, с. 130-227).

Блок временной развертки 9 представляет собой кварцевый генератор с делителем частоты и формирователем импульсов.

Вычислительный блок 10 представляет собой микросхему постоянной памяти, например, серии РТ 500, РФ 572, с элементами согласования уровня напряжения.

Блок индикации 7 может быть реализован на любых счетчиках (десятичных) с дешифратором и семисегментным индикатором.

Система для измерения расхода жидкости работает следующим образом.

Сигнал, соответствующий уровню жидкости, определяется с помощью датчика контроля уровня жидкости 1. С выхода датчика контроля уровня жидкости 1 снимается напряжение U(h), где h - величина напора жидкости. Напряжение U(h) подается на аналоговый вход АЦП 8. АЦП 8 каждые заданные блоком временной развертки 9 интервалы времени t, преобразует напряжение U(h) в двоичное 10-разрядное число N(h). Это число (код) подается в вычислительный блок 10, в котором данное число (код) N(h) преобразуется в двоичное восьмиразрядное число n(h). При этом величина числа n(h) пропорциональна величине расхода жидкости через водослив 5. В простейшем случае это реализуется на микросхемах постоянной памяти, которые программируются следующим образом: вход N(h) - выход n(h). Т.е. связь между АЦП 8 и блоком временной развертки 9 обеспечивает АЦП 8 разрешение на преобразование аналог-цифра.

Далее число (код) n(h) подается на вход блока индикации 7, на индикаторах которого регистрируется объем жидкости, прошедшей через водослив 5 за интервал времени t. Таким образом, время дискретизации определяется интервалом времени t, задаваемым блоком временной развертки 9.

Процесс преобразования входящего сигнала U(h) в величину объема жидкости, прошедший через водослив 5, вычисляется следующим образом: U(h) N(h)t n(h)t. Связь между N(h) и n(h) задается аппаратной функцией следующего вида: где k - коэффициент пропорциональности; a - показатель степени, зависящий от геометрии тонкостенного водослива; hmax - максимальная величина напора жидкости; Qmax - максимальный расход жидкости.

Коды, соответствующие отдельным интегральным значениям расходов жидкости, могут быть переданы из вычислительного блока 10 в электронно-вычислительную машину (ЭВМ) или в телемеханику (ТМ).


Формула изобретения

Система для измерения расхода жидкости в безнапорных канализационных системах, содержащая размещенный в канализационном колодце датчик контроля уровня жидкости, выход которого подключен ко входу устройства приема и обработки информации, содержащего АЦП, блок временной развертки, подключенный ко входу разрешения преобразования АЦП, и вычислительный блок, подключенный к выходу АЦП, при этом информационный выход устройства приема и обработки информации подключен ко входу блока индикации, а датчик контроля уровня жидкости, АЦП, блок временной развертки и вычислительный блок подключены к источнику питания, отличающаяся тем, что она дополнительно содержит устройство гашения скорости потока жидкости, расположенное в канализационном колодце перед водосливом и выполненное в виде сетки, или цилиндров, или стержней.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к горной автоматике, а более конкретно - к способам и средствам автоматического контроля расхода жидких продуктов обогащения и может быть использовано для автоматического контроля расхода минеральных пульп и суспензий, флотореагентов, оборотных шахтных вод, флотационных пульп и других продуктов на углеобогатительных, железорудных, полиметаллических и других обогатительных фабриках, на гидрошахтах и т.п

Изобретение относится к измерительной технике и может быть использовано для измерения расхода топлива при испытании двигателей внутреннего сгорания

Изобретение относится к приборостроению , предназначено для измерения расхода открытых потоков и направлено на повышение точности измерений в широких нерегулярньк руслах путем автоматического удержания датчика скорости в точке средней скорости потока

Изобретение относится к измерениям расхода жидкости в открытых руслах и позволяет повысить точность измерения

Изобретение относится к измерительной технике, может быть использовано для измерения объемного расхода жидкостей, преимущественно агрессивных , и направлено на повышение точности , измерения и автоматизацию измерительного процесса

Изобретение относится к измерительной технике и позволяет расширить функционлльные возможности

Изобретение относится к измерительной технике и может быть использовано для измерения расхода порошкообразной среды в энергетике, металлургии и других отраслях промышленности

Изобретение относится к приборостроительной промышленности, в частности к устройствам для непрерывного контроля малых величин расходов невязких жидкостей

Изобретение относится к измерительной технике по расходомерам, а именно к способам и устройствам измерения объемного расхода жидких сред в открытых водоемах - каналах, не напорных трубопроводах большого сечения и сточных лотках

Изобретение относится к измерительной технике по расходомерам, а именно к устройствам измерения объемного расхода жидких сред в открытых водоемах - каналах, ненапорных трубопроводах большого сечения и сточных лотках

Изобретение относится к сельскому хозяйству, к области водоизмерения и водоучета в гидромелиоративных, преимущественно на оросительных системах, и может быть использовано для целей коммерческого и/или технологического водоизмерения и водоучета на участках открытых водораспределительных каналов на ровных участках и с перепадами местности, оборудованных перегораживающими и водосборными сооружениями

Изобретение относится к устройству для измерения потока молока в смеси молока и воздуха

Изобретение относится к нефтегазовой, нефтехимической промышленности, в частности к устройствам контроля капельного уноса жидкостей на установках комплексной подготовки газа к транспорту

Изобретение относится к системам нефтепродуктообеспечения. Изобретение касается способа замера объема нефтепродукта в резервуаре, в котором мерной линейкой замеряют высоту нефтепродукта в резервуаре, имеющем форму цилиндра круглого горизонтально расположенного, и при известных величинах радиуса и длины резервуара объем нефтепродукта определяют по безразмерной диаграмме, единой для всех горизонтально расположенных резервуаров и которая представляет функцию V/(R2*L)=f(h/R), где V - объем нефтепродукта в резервуаре, R - радиус резервуара, L - длина резервуара, h - высота нефтепродукта в резервуаре. Технический результат- доступность и относительная простота замера объема нефтепродукта. 3 ил.

Изобретение относится к области добычи нефти и может быть использовано при измерениях дебита продукции нефтегазодобывающих скважин. Расходомер переменного уровня состоит из сосуда с напорным и сливным трубопроводами на входе и выходе, перегородки с профилированной сливной щелью, через которую происходит истечение жидкости из входной приемной камеры в выходную полость сосуда, обеспечивающей прямую пропорциональность между расходом жидкости и высотой столба жидкости, и дифференциального манометра, измеряющего высоту столба жидкости в приемной камере перед перегородкой. Согласно изобретению его оснащают дополнительной перегородкой с профилированной сливной щелью, обеспечивающей обратную пропорциональность между расходом газа и высотой столба жидкости, и дополнительным дифференциальным манометром, измеряющим высоту столба жидкости перед этой перегородкой. Причем, в зависимости от конструкции, перегородки с соответствующими дифференциальными манометрами могут располагаться либо в одном сосуде, в двух герметично разделенных полостях, либо в двух сосудах, соединенных трубопроводом, а перегородки могут быть выполнены в виде трубы. Технический результат - расширение функциональных возможностей и соответственно повышение потребительских свойств расходомера переменного уровня и позволяет производить измерения расхода не только жидкости, но и газа. 4 ил.
Наверх