Устройство для измерения давления и температуры в скважине

 

Изобретение относится к измерительной технике и может быть использовано для измерения геофизических параметров в скважине. Изобретение решает задачу расширения функциональных возможностей устройства. Для этого устройство содержит двуплечий преобразователь давления с тензорезисторами, линию связи, источник тока, многоканальный аналого-цифровой преобразователь, подключенный к микропроцессорному блоку. Причем первый вывод источника тока соединен непосредственно с первым входом многоканального аналого-цифрового преобразователя, а через первый провод линии связи - с первым плечом двуплечего тензомоста, а второй вывод источника тока одним концом соединен через токоограничивающий резистор и "плюс" первого диода со вторым входом многоканального аналого-цифрового преобразователя и через второй провод линии связи - с общей точкой плеч двуплечего тензомоста, а другим концом через "минус" второго диода - с третьим входом многоканального аналого-цифрового преобразователя и через третий провод линии связи - со вторым плечом двуплечего тензомоста. Дополнительно устройство снабжено малоинерционным терморезистором, включенным параллельно с дросселем и подключенным одним выводом к четвертому проводу линии связи (броне геофизического кабеля), а другим выводом к общей точке плеч двуплечего тензомоста. К первому выводу источника тока подключен двухпозиционный ключ, соединяющий в положении 1 источник тока через первый провод линии связи с первым плечом двуплечего тензомоста, а в положении 2 - источник тока через четвертый провод линии связи (броню геофизического кабеля) с выводом малоинерционнного терморезистора. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения геофизических параметров в скважине, преобразуемых в изменение активного сопротивления резистивного датчика с использованием четырехпроводной линии связи.

Известны устройства для осуществления дистанционного измерения давления [В. И. Ваганов. Интегральные тензопреобразователи. М. Энергоатомиздат, 1983, с. 133-135] и температуры [Л.И.Померанц, Д.В.Белоконь, В.Ф.Козляр. Аппаратура и оборудование геофизических методов исследования скважин. М. "Недра", с. 197], использующие четырехпроводную линию связи. Однако, невозможность внесения поправки на изменение температуры при изменении давления [В.И.Ваганов. Интегральные тензопреобразователи. М. Энергоатомиздат, 1983, с. 133-135] снижает точность измерения давления, т.к. не известна температура самого тензопреобразователя.

Известно устройство для осуществления дистанционного измерения давления и температуры в скважине одним датчиком (двуплечим тензомостом) [Патент РФ N 2096609. Способ дистанционного измерения давления и температуры в скважине одним датчиком и устройство для его осуществления/ Коловертнов Г.Ю., Краснов А. Н. , Коловертнов Ю.Д., Дамрин Е.С., Федоров В.Н.], включающий подачу тока на датчик, измерение напряжений, по которым определяют значения измеряемых параметров. Известное устройство для измерения давления и температуры, выбранное в качестве прототипа [Патент РФ N 2096609. Способ дистанционного измерения давления и температуры в скважине одним датчиком и устройство для его осуществления/ Коловертнов Г.Ю., Краснов А.Н., Коловертнов Ю.Д., Дамрин Е.С. , Федоров В.Н.], содержит мостовой тензопреобразователь давления (двуплечий тензомост) трехпроводную линию связи (трехжильный бронированный геофизический кабель), источник тока, многоканальный аналого-цифровой преобразователь, подключенный к микропроцессорному блоку.

Известное устройство измеряет давление и температуру тензодатчика. Поскольку инерционность выпускаемых промышленностью тензодатчиков велика (например, для полупроводниковых датчиков структуры "кремний на сапфире" инерционность составляет 10...15 мин), температура тензодатчика отличается от температуры среды на 5. ..10oC и более при движении прибора по стволу скважины. Таким образом, измерение температуры известным устройством приводит к значительной погрешности измерения. Для более точного измерения температуры необходимо периодически останавливать прибор, что приводит к ступенчатой записи температуры по стволу скважины и требует значительного времени на ее измерение.

Изобретение решает техническую задачу расширения функциональных возможностей устройства за счет увеличения количества измеряемых параметров.

Сущность изобретения заключается в том, что известное устройство для измерения давления и температуры, содержащее преобразователь давления, четырехпроводную линию связи, источник тока, многоканальный аналого-цифровой преобразователь, подключенный к микропроцессорному блоку, причем первый вывод источника тока соединен непосредственно с первым входом многоканального аналого-цифрового преобразователя, а через первый провод линии связи - с первым плечом двуплечего тензомоста, а второй вывод источника тока одним концом соединен через токоограничивающий резистор и "плюс" первого диода со вторым входом многоканального аналого-цифрового преобразователя и через второй провод линии связи - с общей точкой двуплечего тензомоста, а другим концом через "минус" второго диода - с третьим входом многоканального аналого-цифрового преобразователя и через третий провод линии связи - со вторым плечом двуплечего тензомоста, согласно изобретению снабжено малоинерционным терморезистором, включенным параллельно с дросселем и подключенным одним выводом к четвертому проводу линии связи (броне геофизического кабеля), а другим выводом - к общей точке плеч двуплечего тензомоста, а к первому выводу источника тока подключен двухпозиционный ключ, соединяющий в положении 1 источник тока через первый провод линии связи с первым плечом двуплечего тензомоста, а в положении 2 - источник тока через четвертый провод линии связи (броню геофизического кабеля) с выводом малоинерционного терморезистора.

Значения давления, температуры тензодатчика и температуры среды определяют из соотношений: где P, TТД, T - соответственно давление кгс/см2, температура тензодатчика [oC] и температура среды [oC] в месте нахождения скважинной части прибора; I - значение питающего тока, [мА]; RР,RТД - приращения активных сопротивлений тензодатчика от изменения измеряемых параметров давления и температуры, [Ом]; RТ - значение активного сопротивления малоинерционного терморезистора, [Ом]; КР - коэффициент пропорциональности давления, кгс/см2Ом: КТД - коэффициент пропорциональности температуры тензодатчика, град./Ом;
КТ - коэффициент пропорциональности температуры среды, град./Ом;
U11, U12, U'12, U21, U22 - измеряемые напряжения, [мВ];
2 U0 = 2 I RРН - падение напряжения на двуплечем тензомостовом датчике (при отсутствии давления и заданной начальной температуре), [мВ];
RРН - номинальное значение сопротивления тензодатчика, [Ом].

На фиг. 1 представлена схема устройства для измерения давления и температуры в скважине, на фиг. 2 - временные диаграммы работы устройства.

Устройство для одновременного измерения давления и температуры в скважине содержит полумостовой датчик давления типа "кремний на сапфире" с тензорезисторами 1 и 2, малоинерционный терморезистор 3, четырехпроводную линию связи, которая представляет собой трехжильный бронированный геофизический кабель с сопротивлением каждой жилы 4 и сопротивлением брони 5, токоограничивающий резистор 6, два диода 7, 8, дроссель 9, двухпозиционный ключ 10.

Устройство имеет двухполярный источник тока 11, быстродействующий многоканальный АЦП (МАЦП) 12 и микропроцессорный блок 13 (МПБ).

Двуплечий датчик давления имеет равные номинальные значения сопротивлений тензорезисторов RРН, которые получают равные и противоположные по знаку приращения сопротивлений от изменения давления RР и равные приращения сопротивлений тензорезисторов от изменения температуры RТД , т. е. текущее значение сопротивления тензорезистора 1 определяется выражением
RPH+RР+RТД,
а тензорезистора 2 в этом случае выражением
RPH-RР+RТД.
Токоограничивающий резистор имеет значение, равное номинальному значению сопротивления тензорезистора RРН.

Выводы источника тока соединены с тремя входами МАЦП и четырьмя проводами линии связи с двуплечим тензомостовым датчиком и с малоинерционным терморезистором. Причем первый вывод источника тока соединен непосредственно с первым входом МАЦП, а через двухпозиционный ключ и первый провод линии связи - с первым плечом двуплечего тензомоста, а через двухпозиционный ключ и четвертый провод линии связи (броню геофизического кабеля) с первым выводом малоинерционного терморезистора, а второй вывод источника тока одним концом соединен через токоограничивающий резистор и "плюс" первого диода со вторым входом МАЦП и через второй провод линии связи - с общей точкой плеч двуплечего тензомоста и вторым выводом малоинерционного терморезистора, а другим концом через "минус" второго диода - с третьим входом МАЦП и через третий провод линии связи - со вторым плечом двуплечего тензомоста, выход МАЦП подключен к МПБ.

Устройство для измерения давления и температуры в скважине работает следующим образом.

В момент подачи положительного импульса тока от источника тока 11 к двуплечему тензомостовому датчику (двухпозиционный ключ 10 замкнут в положении 1) напряжение U11 на входе МАЦП 12 равно
U11= I(RPH+RР+RТД+RЛ), (1)
где RЛ - активное сопротивление одного провода линии связи, [Ом];
RРН - номинальное сопротивление тензодатчика (при отсутствии избыточного давления и заданной начальной температуре), [Ом];
RP,RТД - приращения активных сопротивлений тензодатчика от изменения измеряемых параметров давления и температуры, [Ом], которое по команде, поданной на управляющий вход МАЦП 12 от МПБ13, преобразуется в цифровой код N1, [Ом]:
N1 = aU11= aI(RPH+RР+RТД+RЛ), (2)
где а - коэффициент преобразования, 1/мА.

Затем на вход МАЦП 12 по команде от МПБ 13 подается напряжение U12, которое определяют из соотношения
U12= I(RPH-RР+RТД+RЛ). (3)
По команде, поданной на управляющий вход МАЦП 12, оно преобразуется в цифровой код N2, [Ом]:
N2 = aU12= aI(RPH-RР+RТД+RЛ). (4)
Далее в момент подачи источником тока 11 отрицательного импульса тока к тензодатчику напряжение U'12 на входе МАЦП 12 равно
U'12 = -I RЛ. (5)
Оно преобразуется по команде, поданной на МАЦП 12 в цифровой код N3, [Ом]:
N3 = a U'12 = a (-I RЛ). (6)
Затем при подаче источником тока 11 вновь положительного импульса тока к малоинерционному терморезистору 3 (двухпозиционный ключ 10 замкнут в положении 2) в начальный момент времени, когда дроссель 9 находится в стадии перемагничивания (см. фиг. 2), напряжение U21 на входе МАЦП 12 равно
U21 = I (RБ + RТ) + EСП, (7)
где RБ - активное сопротивление брони кабеля 5, [Ом]:
RТ - активное сопротивление малоинерционного терморезистора 3, [Ом];
EСП - ЭДС поляризации горных пород, которая наводится на броню кабеля, [мВ].

Оно преобразуется по команде, поданной на МАЦП 12 в цифровой код N4, [Ом]:
N4 = a U21 = а (I (RБ + RТ) + EСП). (8)
По окончании перемагничивания дросселя 9 напряжение U22 на входе МАЦП 12 равно
U22 = I RВ + EСП. (9)
Оно преобразуется по команде, поданной на МАЦП 12 в цифровой код N5, [Ом]:
N5 = a U22 = а (I RБ + EСП). (10)
Информация о напряжениях U11, U12, U'12, U21, U22 в виде кодов N1, N2, N3, N4, N5 последовательно поступает в микропроцессорный блок МПБ 13. В МПБ осуществляется определение приращений сопротивлений, вызванных изменением давления и температуры, по следующим алгоритмам:
N1-N2 = a(U11-U12) = a2IRp; (11)

N4 - N5 = a (U21 - U22) = a I RТ, (13)
где 2 N0 = 2 a U0 = 2 a I RРН - цифровой код, равный падению напряжения на двуплечем тензомостовом датчике (при отсутствии давления и заданной начальной температуре), [Ом].

Обеспечивая равенство а = 1/I, получим алгоритмы приращений сопротивлений двуплечего тензомостового датчика и сопротивления малоинерционного терморезистора:


RТ = N4 - N5 (16).

Измеряемые параметры - давление, температура тензодатчика и температура среды вычисляются умножением результатов на коэффициенты пропорциональности соответственно КР, КТД и КТ, определяемые при снятии градуировочных характеристик датчиков раздельно при действии давления и температуры:


T = КТ RТ = КТ (N4 - N5). (19)
Измеряемая информация может быть выведена на отдельные блоки индикации давления, температуры тензодатчика и температуры среды на печать или поступать на ЭВМ для дальнейшего хранения, обработки и использования.

Таким образом, устройство для измерения давления и температуры в скважине позволяет при измерении давления и температуры по четырехпроводной линии связи (по трехжильному бронированному геофизическому кабелю) повысить точность измерения температуры, использование брони кабеля в данном случае не приводит к уменьшению точности измерения, поскольку броня находится в цепи источника питания и падение напряжения на ней, даже нестационарное, не влияет на напряжения, измеряемые МПБ.

Предлагаемое изобретение может быть использовано в нефтегазовой промышленности для исследования нефтяных и газовых скважин, а также для исследования высокотемпературных парогидротермальных скважин, предназначенных для получения пара из недр земли для геотермальных станций.


Формула изобретения

Устройство для измерения давления и температуры в скважине, содержащее преобразователь давления, четырехпроводную линию связи, источник тока, многоканальный аналого-цифровой преобразователь, подключенный к микропроцессорному блоку, причем первый вывод источника тока соединен непосредственно с первым входом многоканального аналого-цифрового преобразователя, а через первый провод линии связи - с первым плечом двуплечего тензомоста, а второй вывод источника тока одним концом соединен через "плюс" первого диода со вторым входом многоканального аналого-цифрового преобразователя и через второй провод линии связи - с общей точкой плеч двуплечего тензомоста, а другим концом через "минус" второго диода - с третьим входом многоканального аналого-цифрового преобразователя и через третий провод линии связи - со вторым плечом двуплечего тензомоста, отличающееся тем, что оно снабжено малоинерционным терморезистором, включенным параллельно с дросселем и подключенным одним выводом к четвертому проводу линии связи, а другим выводом к общей точке плеч двуплечего тензомоста, а к первому выводу источника тока подключен двухпозиционный ключ, соединяющий в положении 1 источник тока через первый провод линии связи с первым плечом двуплечего тензомоста, а в положении 2 - источник тока через четвертый провод линии связи с выводом малоинерционного терморезистора, для компенсации сопротивления плеча тензомостового датчика при смене направления тока в цепь первого диода последовательно включен токоограничающий резистор.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к области нефтяной и газовой промышленности при строительстве скважин, в частности к способам определения текущего гидродинамического давления на забое в процессе бурения скважин с горизонтальным окончанием в высокодренированных песчаных коллекторах малой мощности

Изобретение относится к бурению в нефтяной и газовой промышленности при строительстве скважин

Изобретение относится к исследованиям скважин при контроле за разработкой нефтяных месторождений и может быть использовано при промыслово-геофизических исследованиях экологического состояния верхних горизонтов для выявления низкодебитных (>0,5 м3/сут) перетоков за кондуктором

Изобретение относится к добыче нефти и газа и может быть использовано при эксплуатации добывающих скважин в районах вечной мерзлоты для сохранения грунта вокруг устьевой зоны скважины в мерзлом состоянии в течение всего срока ее работы

Изобретение относится к нефтедобывающей промышленности и предназначено для измерения давления в эксплуатационных нефтедобывающих скважинах, оснащенных насосами ШГН

Изобретение относится к нефтедобывающей отрасли и может быть использовано для контроля разработки нефтяных месторождений при определении места нарушения герметичности эксплуатационной колонны в нагнетательной скважине в интервалах, не перекрытых НКТ

Изобретение относится к нефтяной промышленности и может найти применение при установлении пластового давления на нефтяной залежи
Изобретение относится к нефтяной промышленности и может быть использовано для контроля и проектирования разработки месторождений

Изобретение относится к измерительной технике и может быть использовано в телеметрии при изменяющемся сопротивлении электросвязи

Изобретение относится к нефтедобывающей промышленности и предназначено для определения физических параметров пластовых флюидов

Изобретение относится к разработке и эксплуатации газоконденсатных месторождений и может быть использовано для установления режимов работы

Изобретение относится к нефтяной промышленности, а именно к способам разработки нефтяных месторождений со слоисто-неоднородными пластами с помощью контроля полей давлений

Изобретение относится к нефтедобывающей промышленности и может быть использовано на нефтяных месторождениях для измерения пластового давления для контроля и управления процессом добычи нефти

Изобретение относится к бурению глубоких скважин для добычи нефтепродуктов и предназначено для сбора данных о подповерхностном пластовом давлении во время проведения операции бурения скважины

Изобретение относится к бурению скважин и может быть использовано при определении различных параметров и свойств приповерхностного пласта
Изобретение относится к добыче нефти, газа и т.п флюидов и может быть использовано при контроле скважинных процессов

Изобретение относится к области нефтяной промышленности, а именно к способам исследования продуктивных пластов, вскрытых скважинами

Изобретение относится к нефтяной и газовой промышленности и используется для интенсификации добычи нефти и газа
Наверх