Способ изготовления фотопреобразователей с пленкой пористого кремния

 

Изобретение относится к изготовлению оптоэлектронных приборов, а именно кремниевых фотопреобразователей (ФП). Техническим результатом изобретения является снижение трудоемкости изготовления и повышение эффективности ФП. Сущность: после диффузионного легирования поверхности кремния на фоточувствительных участках поверхности перед нанесением контактов создают пленку пористого кремния, которая во время нанесения контактов выполняет функции защитной маски. Дополнительное повышение эффективности ФП достигается тем, что при создании р-n-перехода толщину легированного фосфором слоя на участках образования пористого кремния делают меньше, чем на контактных участках. 1 з.п. ф-лы.

Изобретение относится к изготовлению оптоэлектронных приборов, а именно кремниевых фотопреобразователей (ФП).

Известен способ изготовления ФП, включающий изготовление диодной структуры, нанесения металлических контактов методом химического никелирования поверхности кремния и просветляющего покрытия (Васильев А.М., Ландсман А.П. Полупроводниковые фотопреобразователи.- М.: Советское pадио, 1971). Недостатком этого способа является невысокая эффективность ФП.

Известен способ изготовления ФП, включающий нанесение просветляющего покрытия в виде пленки окиси кремния, пленки окислов металлов (тантала, ниобия, титана) или пленки нитрида кремния (Колтун M.M. Солнечные элементы.- М. : Наука, 1987). Недостатками известных способов являются высокая трудоемкость изготовления просветляющей пленки, связанная с проведением вакуумного напыления, термообработки, избирательным нанесением просветления и недостаточная эффективность ФП.

В качестве прототипа известен способ изготовления кремниевых ФП, включающий создание диодной структуры, нанесение металлических контактов в форме контактного рисунка, нанесение поверх контактов кислотостойкой защитной маски, создание пленки пористого кремния в промежутках между контактными участками и удаление защитной маски (доклад L. Schirone, G. Sotgiu, M. Montecchi, A. Parisini: "Porous Silicon in High Efficiency Large Solar Cells", 14th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 1997). По этому способу пленка пористого кремния создается путем очень простой операции - погружения на несколько секунд заготовки ФП в кислотный раствор.

Недостатком известного способа является большая трудоемкость изготовления, связанная с центровкой защитной маски с ранее созданным контактным рисунком, невозможность создания пористой пленки вплотную к металлическому контакту на всей фоточувствительной поверхности. Малейшее повреждение защитной маски и оголение металла контакта ведет к получению некачественной пористой пленки и низкой эффективности ФП.

Задачей изобретения является снижение трудоемкости изготовления и повышение эффективности ФП.

Поставленная задача достигается тем, что после диффузионного легирования поверхности кремния фосфором на фоточувствительных участках поверхности пленку пористого кремния создают перед нанесением контактов, и пористый кремний выполняет функции защитной маски. Дополнительное повышение эффективности ФП достигается тем, что при диффузионном легировании поверхности кремния толщину легированного фосфором слоя (глубину p-n-перехода) на участках образования пористого кремния делают меньше, чем на контактных участках.

Снижение трудоемкости изготовления обеспечивается тем, что предлагаемый способ не требует точной центровки при нанесении защитной маски и уменьшает количество технологических операций. Пленка пористого кремния благодаря своим диэлектрическим свойствам выполняет функции защитной маски при избирательном химическом осаждении контактов. Свободная от металлов поверхность кремния позволяет с высокой воспроизводимостью получать пленку пористого кремния с заданными свойствами (однородную по толщине с низкой скоростью поверхностной рекомбинации), что позволяет повысить эффективность ФП. Другим преимуществом данного способа является то, что увеличение толщины легированного фосфором слоя (глубины p-n-перехода) под контактами (по крайней мере до 1 мкм) ведет к снижению рекомбинационных потерь и повышению эффективности ФП.

Примеры конкретного исполнения могут быть следующими.

1. Диффузионное легирование лицевой стороны фосфором и тыльной стороны бором пластин кремния проводят за одну стадию на глубину 0,5-1 мкм, затем на лицевую и тыльную стороны методом трафаретной печати наносят кислотостойкий полимер (маску) в форме будущего контактного рисунка (на тыльной стороне в виде сплошного слоя), маску сушат при температуре около 100oC, погружением в раствор плавиковой кислоты с небольшой добавкой азотной кислоты создают в течение не более 1 мин на лицевой стороне ФП пленку пористого кремния синего цвета толщиной от 0,1 до 0,15 мкм, защитную маску удаляют с помощью горячей воды и на участки кремния, свободные от пористого кремния осаждают химическим методом последовательно контактные слои из никеля, меди и серебра. В результате изготовленные ФП имеют КПД в среднем около 14%.

2. Более высокий КПД до 15% имеют ФП, у которых в отличие от примера 1 за счет проведения двойной диффузии толщина легированного фосфором слоя (глубина p-n-перехода) в местах будущего контакта на лицевой стороне увеличена до 1 мкм.

Формула изобретения

1. Способ изготовления кремниевых фотопреобразователей с пленкой пористого кремния, включающий легирование фосфором лицевой стороны пластин кремния, избирательное нанесение металлических контактов на контактные участки кремния и создание просветляющей пленки пористого кремния между контактными участками, отличающийся тем, что после легирования поверхности пластин кремния на нее наносят кислотостойкую защитную маску в форме контактного рисунка, погружением в кислотный раствор на свободных от маски участках поверхности кремния создают пленку пористого кремния и после удаления маски на занимаемые ею участки кремния проводят избирательное осаждение металлических контактов.

2. Способ по п.1, отличающийся тем, что толщину легированного фосфором слоя на участках образования пористого кремния делают меньше, чем на контактных участках.

NF4A Восстановление действия патента СССР или патента Российской Федерации на изобретение

Дата, с которой действие патента восстановлено: 27.07.2008

Извещение опубликовано: 27.07.2008        БИ: 21/2008



 

Похожие патенты:

Изобретение относится к способу изготовления солнечного элемента, содержащего полупроводниковый слой, внутри которого в направлении толщины имеется p-n-запирающий слой, облучаемый светом, по меньшей мере, с одной стороны, и контакты для электрического контактирования полупроводникового слоя с каждой стороны p-n-запирающего слоя, и далее к солнечному элементу, содержащему полупроводниковый слой с p-n-запирающим слоем в направлении глубины и контакт с каждой стороны запирающего слоя для электрического контактирования полупроводникового слоя

Изобретение относится к области изготовления оптоэлектронных приборов, в частности фотоэлектрических солнечных элементов (СЭ)

Изобретение относится к технологии изготовления оптоэлектронных приборов, в частности солнечных элементов (СЭ)

Изобретение относится к технологии изготовления полупроводниковых фотоприемников и может использоваться для создания многоэлементных фотоприемников различного назначения, в том числе чувствительных в нескольких диапазонах спектра
Изобретение относится к технологии сборки фотоприемных устройств, выполненных на основе полупроводниковых материалов и предназначено для повышения надежности сборки

Изобретение относится к гелиоэнергетике, в частности к солнечным фотоэлектрическим модулям с концентраторами солнечного излучения для получения тепла и электричества

Изобретение относится к способу и устройству для изготовления фотогальванических (фотовольтаических) приборов, а также касается получающегося в результате изделия для преобразования света в электричество
Изобретение относится к технологии изготовления полупроводниковых приборов

Изобретение относится к оптоэлектронике, в частности к устройствам, преобразующим лучистую энергию в электрическую, и может быть использовано в полупроводниковой электронике, в частности оптоэлектронике, и в медицинских технологиях при облучении УФ в физиокабинетах, на предприятиях АПК при облучении животных, в экологии при измерении низких интенсивностей излучения от экранов телевизоров и мониторов компьютеров
Изобретение относится к области электронной техники, в частности к устройствам, преобразующим солнечное излучение в электрическую энергию при помощи кремниевых фотоэлементов

Изобретение относится к гелеоэнергетике

Изобретение относится к гелиоэнергетике, в частности к конструкции и изготовлению солнечных фотоэлектрических модулей для получения электричества

Изобретение относится к полупроводниковой электронике, в частности к оптоэлектронике и фотоэнергетике, и может быть применено в качестве поляриметрических фотодетекторов

Изобретение относится к созданию телевизионной аппаратуры для астрономии и космических исследований, а также внеатмосферной астрономии

Изобретение относится к области изготовления оптоэлектронных приборов, в частности фотоэлектрических солнечных элементов (СЭ)

Изобретение относится к области фотогальваники и может быть использовано, например, в производстве солнечных элементов для нанесения светопоглощающих слоев на основе многокомпонентных халькопиритных соединений меди CuInSe2, CuGaSe2 и Cu(In, Ga)Se2
Наверх