Радиодальномер

 

Изобретение относится к радиотехнике и предназначен для прецизионного определения расстояния между произвольными подвижными объектами в любой момент времени. Задачей изобретения является создание PD, выполняющего прецизионные измерения на заданном расстоянии между произвольными подвижными объектами в любой момент времени. Достигаемым техническим результатом предложенного PD является необходимое расширение зоны однозначности измерений без потери прецизионной точности в реальном масштабе времени на основе частного метода измерения расстояний за счет использования многошкальной измерительной системы и специального активного переотражения, повышающего его помехоустойчивость, который достигается тем, что используется самостоятельный активный блок - ведомая станция, которая содержит последовательное соединение второй антенны, второго развязывающего блока, второго приемника, второго блока синхронизации и формирования временной подставки, второго генератора ЛМЧ импульсов, второго формирователя зондирующего и гетеродинного сигналов, второй вход которого соединен с вторым выходом второго блока синхронизации и формирования временной подставки, и второго усилителя, выход которого соединен с первым входом второго развязывающего блока. 1 ил.

Изобретение относится к радиотехнике и может быть использовано для прецизионного определения расстояния между произвольными подвижными объектами в любой момент времени.

Известен импульсный светодальномер с пассивным отражателем [1], использующий временной метод измерения расстояния на основе принципа обратной связи.

Известный светодальномер состоит из ведущей и ведомой станций, установленных на произвольных подвижных объектах, между которыми требуется определить расстояние. Ведущая станция содержит передатчик оптического диапазона, приемопередающую систему (антенна оптического диапазона), приемник оптического диапазона и частотомер в качестве осредняющего счетчика. Ведомая станция состоит из пассивного отражателя, в качестве которого, как правило, используется уголковый отражатель. Информация о расстоянии между объектами в цифровой форме вырабатывается осредняющим счетчиком и пропорциональна частоте формируемой за счет обратной связи импульсной последовательности зондирующего сигнала.

Схема построения известного светодальномера за счет использования отсчетов времени запаздывания отраженных импульсов имеет принципиально невысокую точность измерений, кроме того, сильно зависит от качества юстировки ведущей и ведомой станций, расстояния между ними и погодных условий.

Известен гетеродинный некогерентный радиодальномер (PD) с активным отражателем [2], использующий фазовый метод измерения расстояния.

Ведущая и ведомая станции известного радиодальномера, установленные на произвольных подвижных объектах, между которыми измеряют расстояние, излучают электромагнитные колебания разных, но близких частот: ведущая - частоту f1, а ведомая - частоты f2 и F2, причем f1 f2 , а F2 << f1, f2. Ведущая станция содержит высокочастотный (ВЧ) передатчик, ВЧ и низкочастотный (НЧ) приемники, приемопередающую антенну, смеситель и фазометр. Ведомая станция содержит ВЧ приемник, ВЧ и НЧ передатчики, приемопередающую антенну и смеситель. Информация о расстоянии между объектами определяется фазометром ведущей станции и пропорциональна разности фаз между ВЧ и НЧ колебаниями.

Схема построения известного PD для обеспечения необходимой ширины зоны однозначности измерений требует значительного усложнения за счет одновременного использования нескольких пар несущих частот электромагнитных колебаний.

Наиболее близким техническим решением к предлагаемому изобретению является радиовысотомер (РВ) [3], установленный в качестве ведущей станции радиодальномера, используемый совместно с пассивным отражателем на ведомой станции и работающий в режиме излучения радиоимпульсов с двойной линейной частотной модуляцией (ЛЧМ), в котором для измерения расстояния между объектами используется двухшкальная измерительная система, основанная на определении положения инвариантной к дальности характерной точки половинной мощности на нижнем крае энергетического спектра преобразованного отраженного сигнала, образующегося в результате гетеродинирования принимаемого отраженного сигнала копией зондирующего ЛЧМ радиоимпульса, но смещенной относительно него по частоте на величину первой промежуточной частоты приемного тракта и совмещенной по времени с отраженным сигналом.

Известный радиовысотомер содержит последовательное соединение генератора двойной ЛЧМ-импульсов, формирователя зондирующего и гетеродинного сигналов, усилителя, развязывающего блока и антенны, к второму выходу развязывающего блока последовательно подключены первый смеситель, второй вход которого соединен с вторым выходом формирователя зондирующего и гетеродинного сигналов, приемник, блок поиска по дальности и блок синхронизации и формирования временной подставки, первый выход которого подключен к входу генератора двойной ЛЧМ-импульсов, второй выход соединен с вторым входом формирователя зондирующего и гетеродинного сигналов, а третий выход соединен с первым входом цифрового сумматора, к выходу генератора двойной ЛЧМ-импульсов подключена первая линия задержки, к выходу которой параллельно подключены последовательное соединение первого перестраиваемого гетеродина и второго смесителя и последовательное соединение второй линии задержки, второго перестраиваемого гетеродина и третьего смесителя, к выходу приемника параллельно подключены последовательное соединение второго смесителя, четвертого смесителя и первого полосового фильтра и последовательное соединение третьей линии задержки и третьего смесителя, выход которого соединен с вторым входом четвертого смесителя, к выходу первого полосового фильтра параллельно подключены пятый и шестой смесители, к выходу пятого смесителя параллельно подключены последовательное соединение второго полосового фильтра, первого квадратора, первого фильтра нижних частот (ФНЧ), первого сумматора первого аттенюатора, второго аттенюатора, первого вычитателя и регулируемого усилителя, второй вход которого соединен с выходом генератора опорной частоты, и последовательное соединение третьего полосового фильтра второго квадратора, второго ФНЧ, второго сумматора, второго вычитателя, второй вход которого соединен с выходом первого аттенюатора, и третьего сумматора, второй вход которого соединен с выходом регулируемого усилителя, к выходу шестого смесителя параллельно подключены последовательное соединение четвертого полосового фильтра, третьего квадратора, третьего ФНЧ, выход которого соединен с вторым входом второго сумматора, и третьего вычитателя, второй вход которого соединен с выходом второго ФНЧ, а выход - с вторым входом первого вычитателя, и последовательное соединение пятого полосового фильтра, четвертого квадратора, четвертого ФНЧ, выход которого соединен с вторым входом первого сумматора, к выходу третьего сумматора параллельно подключены последовательное соединение первого амплитудного детектора, пятого ФНЧ, третьего перестраиваемого гетеродина, выход которого соединен с вторым входом пятого смесителя, и первого осредняющего счетчика, выход которого соединен с вторым входом цифрового сумматора, и последовательное соединение второго амплитудного детектора, шестого ФНЧ, четвертого перестраиваемого гетеродина, выход которого соединен с вторым входом шестого смесителя, и второго осредняющего счетчика, выход которого соединен с третьим входом цифрового сумматора, к выходу четвертого смесителя последовательно подключены шестой полосовой фильтр, выход которого соединен с входом четвертой линии задержки, четвертый сумматор, второй вход которого соединен с выходом четвертой линии задержки, и седьмой смеситель, к выходу которого параллельно подключены последовательное соединение седьмого полосового фильтра, пятого квадратора, седьмого ФНЧ, третьего аттенюатора, четвертого вычитателя, интегратора, пятого перестраиваемого гетеродина, выход которого соединен с вторым входом седьмого смесителя, и третьего осредняющего счетчика, выход которого соединен с четвертым входом цифрового сумматора, и последовательное соединение восьмого полосового фильтра, шестого квадратора, восьмого ФНЧ, выход которого соединен с вторым входом четвертого вычитателя, причем выход цифрового сумматора является выходом дальномера, выдающим в цифровой форме информацию о расстоянии между ведущей и ведомой станциями на подвижных объектах.

Схема построения известного радиодальномера, полученная при использовании данного РВ в качестве ведущей станции совместно с пассивным отражателем на ведомой станции, за счет применения двойной ЛЧМ зондирующего сигнала значительно усложнилась и имеет низкую помехоустойчивость, определяемую выбором типа этого отражателя.

Задачей настоящего изобретения является создание радиодальномера, выполняющего прецизионные измерения на заданном расстоянии между произвольными подвижными объектами в любой момент времени.

Техническим результатом предложенного PD является необходимое расширение зоны однозначности измерений без потери прецизионной точности в реальном масштабе времени на основе частотного метода измерения расстояний за счет использования многошкальной измерительной системы и специального активного переотражения, повышающего его помехоустойчивость.

Технический результат достигается тем, что в радиодальномер, ведущая станция которого содержит последовательное соединение первого генератора ЛЧМ-импульсов и первого формирователя зондирующего и гетеродинного сигналов, второй вход которого соединен с вторым выходом первого блока синхронизации и формирования временной подставки, первый выход которого соединен как с входом первого генератора ЛЧМ-импульсов, так и с входом первого усилителя, последовательно соединенного с первым развязывающим блоком и первой антенной, к второму выходу первого развязывающего блока последовательно подключены первый смеситель, второй вход которого соединен с вторым входом формирователя зондирующего и гетеродинного сигналов, первый приемник, выход которого параллельно соединен с вторым, третьим и четвертым смесителем, блок поиска по дальности и первый блок синхронизации и формирования временной подставки, третий выход которого соединен с первым входом цифрового сумматора, второй смеситель, к выходу которого параллельно подключены последовательное соединение первого полосового фильтра, первого квадратора, первого ФНЧ, первого сумматора первого аттенюатора, второго аттенюатора, первого вычитателя и регулируемого усилителя, второй вход которого соединен с выходом генератора опорной частоты, и последовательное соединение второго полосового фильтра, второго квадратора второго ФНЧ, второго сумматора, второго вычитателя, второй вход которого соединен с выходом первого аттенюатора, и третьего сумматора, второй вход которого соединен с выходом регулируемого усилителя, третий смеситель, к выходу которого параллельно подключены последовательное соединение третьего полосового фильтра, третьего квадратора, третьего ФНЧ, выход которого соединен с вторым входом второго сумматора, третьего вычитателя, второй вход которого соединен с выходом второго ФНЧ, а выход соединен с вторым входом первого вычитателя, и последовательное соединение четвертого полосового фильтра, четвертого квадратора, четвертого ФНЧ, выход которого соединен с вторым входом первого сумматора, к выходу третьего сумматора параллельно подключены последовательное соединение первого амплитудного детектора, пятого ФНЧ, первого перестраиваемого гетеродина, выход которого соединен с вторым входом второго смесителя, и первого осредняющего счетчика, выход которого соединен с вторым входом цифрового сумматора, и последовательное соединение второго амплитудного детектора, шестого ФНЧ, второго перестраиваемого гетеродина, выход которого соединен с вторым входом третьего смесителя, и второго осредняющего счетчика, выход которого соединен с третьим входом цифрового сумматора, четвертый смеситель, к выходу которого параллельно подключены последовательное соединение пятого полосового фильтра, пятого квадратора, седьмого ФНЧ, третьего аттенюатора, четвертого вычитателя, интегратора, третьего перестраиваемого гетеродина, выход которого соединен с вторым входом четвертого смесителя, и третьего осредняющего счетчика, выход которого соединен с четвертым входом цифрового сумматора, и последовательное соединение шестого полосового фильтра, шестого квадратора, восьмого ФНЧ, выход которого соединен с вторым входом четвертого вычитателя, причем выход цифрового сумматора является выходом PD, выдающим в цифровой форме информацию о расстоянии между ведущей и ведомой станциями, добавлен самостоятельный активный блок - ведомая станция, которая содержит последовательное соединение второй антенны, второго развязывающего блока, второго приемника, второго блока синхронизации и формирования временной подставки, второго генератора ЛЧМ-импульсов, второго формирователя зондирующего и гетеродинного сигналов, второй вход которого соединен с вторым выходом второго блока синхронизации и формирования временной подставки, и второго усилителя, выход которого соединен с первым входом второго развязывающего блока.

Общим для предлагаемого PD с прототипом признаком является использование одинаковых типовых элементов структурной схемы, одинаково соединенных в цепи, таких как генератор ЛЧМ-импульсов, формирователь зондирующего и гетеродинного сигналов, усилитель, развязывающий блок, антенна, приемник, блок поиска по дальности, блок синхронизации и формирования временной подставки, четыре смесителя, шесть полосовых фильтров, шесть квадраторов, восемь ФНЧ, три сумматора, четыре вычитателя, три аттенюатора, два амплитудных детектора, три перестраиваемых гетеродина, три осредняющих счетчика, интегратор, регулируемый усилитель, генератор опорной частоты и цифровой сумматор, причем прототип можно рассматривать как частный случай предложенного дальномера, в котором используется двойная ЛЧМ зондирующего сигнала и пассивный отражатель, как правило, уголкового типа.

К отличиям предложенного радиодальномера относится усложнение его структурной схемы, заключающееся в появлении самостоятельного активного блока - ведомой станции, которая содержит антенну, развязывающий блок, приемник, блок синхронизации и формирования временной подставки, генератор ЛЧМ-импульсов, формирователь зондирующего и гетеродинного сигналов и усилитель.

На чертеже изображена структурная схема предложенного радиодальномера.

Радиодальномер, ведущая станция которого содержит последовательное соединение первого генератора 1 ЛЧМ-импульсов и первого формирователя 2 зондирующего и гетеродинного сигналов, второй вход которого соединен с вторым выходом первого блока 3 синхронизации и формирования временной подставки, первый выход которого соединен как с входом первого генератора 1 ЛЧМ-импульсов, так и с входом первого усилителя 4, последовательно соединенного с первым развязывающим блоком 5 и первой антенной 6, к второму выходу первого развязывающего блока 5 последовательно подключены первый смеситель 7, второй вход которого соединен с вторым выходом формирователя 2 зондирующего и гетеродинного сигналов, первый приемник 8, блок 9 поиска по дальности и первый блок 3 синхронизации и формирования временной подставки, третий выход которого соединен с первым входом цифрового сумматора 10, выход которого является выходом дальномера, выдающим в цифровой форме информацию о расстоянии между ведущей и ведомой станциями, а выход первого приемника 8 параллельно соединен с вторым 11, третьим 12 и четвертым 13 смесителями, второй смеситель 11, к выходу которого параллельно подключены последовательное соединение первого полосового фильтра 14, первого квадратора 15, первого ФНЧ 16, первого сумматора 17, первого аттенюатора 18, второго аттенюатора 19, первого вычитателя 20 и регулируемого усилителя 21, второй вход которого соединен с выходом генератора 22 опорной частоты, и последовательное соединение второго полосового фильтра 23, второго квадратора 24, второго ФНЧ 25, второго сумматора 26, второго вычитателя 27, второй вход которого соединен с выходом первого аттенюатора 18, и третьего сумматора 28, второй вход которого соединен с выходом регулируемого усилителя 21, третий смеситель 12, к выходу которого параллельно подключены последовательное соединение третьего полосового фильтра 29, третьего квадратора 30, третьего ФНЧ 31, выход которого соединен с вторым входом второго сумматора 26, и третьего вычитателя 32, второй вход которого соединен с выходом второго ФНЧ 25, а выход соединен с вторым входом первого вычитателя 20, и последовательное соединение четвертого полосового фильтра 33, четвертого квадратора 34, четвертого ФНЧ 35, выход которого соединен с вторым входом первого сумматора 17, к выходу третьего сумматора 28 параллельно подключены последовательное соединение первого амплитудного детектора 36, пятого ФНЧ 37, первого перестраиваемого гетеродина 38, выход которого соединен с вторым входом второго смесителя 11, и первого осредняющего счетчика 39, выход которого соединен с вторым входом цифрового сумматора 10, и последовательное соединение второго амплитудного детектора 40, шестого ФНЧ 41, второго перестраиваемого гетеродина 42, выход которого соединен с вторым входом третьего смесителя 12, и второго осредняющего счетчика 43, выход которого соединен с третьим входом цифрового сумматора 10, четвертый смеситель 13, к выходу которого параллельно подключены последовательное соединение пятого полосового фильтра 44, пятого квадратора 45, седьмого ФНЧ 46, третьего аттенюатора 47, четвертого вычитателя 48, интегратора 49, третьего перестраиваемого гетеродина 50, выход которого соединен с вторым входом четвертого смесителя 13, и третьего осредняющего счетчика 51, выход которого соединен с четвертым входом цифрового сумматора 10, и последовательное соединение шестого полосового фильтра 52, шестого квадратора 53, восьмого ФНЧ 54, выход которого соединен с вторым входом четвертого вычитателя 48, а ведомая станция, выполненная в виде самостоятельного активного блока, содержит последовательное соединение второй антенны 55, второго развязывающего блока 56, второго приемника 57, второго блока 58 синхронизации и формирования временной подставки, второго генератора 59 ЛЧМ-импульсов, второго формирователя 60 зондирующего и гетеродинного сигналов, второй вход которого соединен с вторым выходом второго блока 58 синхронизации и формирования временной подставки, и второго усилителя 61, выход которого соединен с первым входом второго развязывающего блока 56.

Предложенный радиодальномер работает следующим образом.

Блоки 1-9 (см. чертеж) ведущей станции представляют собой блоки типового импульсного когерентного РВ с внутриимпульсной ЛЧМ используемого сигнала, достаточно полно описанного в [3] , в котором осуществляется демодуляция принимаемого зондирующего сигнала ведомой станции методом его гетеродинирования аналогичной копией ведущей станции, смещенной относительно него по частоте на величину первой промежуточной частоты приемного тракта и совмещенной по времени с отраженным сигналом. Первый генератор 1 ЛЧМ-импульсов вырабатывает последовательность радиоимпульсов с заданными параметрами, а первый формирователь 2 зондирующего и гетеродинного сигналов под воздействием управляющего сигнала, поступающего с второго выхода первого блока 3 синхронизации и формирования временной подставки, производит селекцию поступающей с выхода первого генератора 1 ЛЧМ на его первый вход последовательности радиоимпульсов на зондирующий и гетеродинный сигналы. Сформированный первым блоком 3 синхронизации и формирования временной подставки сигнал синхронизации усиливается в первом усилителе 4, через первый развязывающий блок 5 поступает в первую антенну 6 и излучается. Сформированный и отраженный ведомой станцией зондирующий ЛЧМ сигнал с такими же параметрами поступает через ту же антенну 6 и первый развязывающий блок 5 на первый вход первого смесителя 7, на второй вход которого поступает гетеродинный радиоимпульс с второго выхода первого формирователя 2 зондирующих и гетеродинных сигналов. С выхода первого смесителя 7 преобразованный отраженный зондирующий сигнал поступает на вход первого приемника 8, где фильтруется, усиливается и поступает на вход блока 9 поиска по дальности. Этот блок 9 обеспечивает первоначальный поиск, захват сигнала по дальности и совмещение по времени гетеродинного и отраженного зондирующего сигналов, точно измеряя время задержки, и выдает в этом случае на первый блок 3 синхронизации и формирования временной подставки сигнал об окончании поиска. Первый блок 3 синхронизации и формирования временной подставки, используя импульсный характер сигналов, обеспечивает заданный временной режим работы ведущей станции PD. Этот блок 3 вырабатывает две последовательности синхроимпульсов, имеющих одинаковый постоянный период повторения Tповт, причем вторая последовательность получается из первой путем задержки ее импульсов в устройстве дискретно-регулируемой задержки на время o с точностью до временного дискрета, соответствующего запаздыванию отраженного зондирующего сигнала. Измерение величины задержки происходит под воздействием управляющего сигнала, поступающего с выхода блока 9 поиска по дальности. Полученное значение кода расстояния по цифровому сигналу обнаружения от блока 9 поиска по дальности в цифровой форме с третьего выхода блока 3 поступает на первый вход цифрового сумматора 10 и используется в качестве временной подставки, которая с точностью, определяемой величиной дискрета измерения задержки, соответствует измеряемому расстоянию между объектами Sо.

Прецизионное уточнение расстояния в заданной зоне однозначности, т.е. определение высокоточной добавки к полученному значению временной подставки, производится двухшкальной измерительной системой, как и в [3], методом определения положения характерной точки половинной мощности на нижнем крае энергетического спектра преобразованного отраженного сигнала в пределах полосы частот, соответствующей удвоенной величине дискрета измерения задержки гетеродинных импульсов, на основе амплитудных соотношений используемых выборок.

Рассмотрим принцип работы радиодальномера, в приемном тракте ведущей станции которого реализован алгоритм суммарно-разностной обработки двухшкальной измерительной системы, подробно описанной в [3], учитывая, что используемые радиоимпульсы ведомой станции имеют всего одну ЛЧМ.

Точная шкала измерительной системы построена на частотном стробировании и выборке трех заданным образом разнесенных по частоте участков энергетического спектра, которое выполняет на борту двухканальное устройство прецизионной обработки дальномерной информации, причем фильтрующая часть каждого из каналов построена по принципу "следящего гетеродина". Первый канал этой системы выполняет одновременное двухчастотное стробирование дальномерного спектра полосовыми фильтрами с фиксированными частотами настройки f1 и f10, а второй канал - полосовыми фильтрами с фиксированными частотами настройки f2 и f20, что за счет заданного соотношения между амплитудами полученных выборок обеспечивает постоянную разность частот в обоих каналах. При построении структурной схемы устройства следует учитывать, что амплитуды выборок на частотах f10 и f20 равны между собой, так как лежат в плоской области максимального значения спектра преобразованного отраженного сигнала, дополнительной информации не несут и считаются за одну частотную выборку удвоенного значения.

Спектр преобразованного сигнала, поступившего от активного отражателя, поданный с выхода первого приемника 8 (см. чертеж), переносится двумя смесителями 11 и 12 в область промежуточной частоты fпч и далее четырьмя полосовыми фильтрами 14, 23, 29 и 33, частоты настройки которых соответственно равны f10, f1 и f2, f20, осуществляется одновременное стробирование трех участков энергетического спектра преобразованного отраженного сигнала в окрестности его нижнего края. Для оценки энергии стробируемых спектральных составляющих на выходе полосовых фильтров соответственно включены квадраторы 15, 24, 30 и 34 и осредняющие устройства 16, 25, 31 и 35 - ФНЧ. С выходов второго 25 и третьего 31 ФНЧ сигналы, определяющие энергию спектральных составляющих первого и второго стробируемых участков, расположенных симметрично относительно характерной точки половинной мощности на нижнем крае энергетического спектра, поступают на входы второго сумматора 26, последовательно соединенные вторым вычитателем 27, на второй вход которого с выхода первого аттенюатора 18 подается опорный сигнал, сформированный как сумма сигналов с выходов первого 16 и четвертого 35 ФНЧ в первом сумматоре 17, ослабленный в два раза в первом аттенюаторе 18 и соответствующий энергии спектральной составляющей третьего стробируемого участка. Сигналы, поступающие с выходов второго 25 и третьего 31 ФНЧ, сравниваются в третьем вычитателе 32, а полученная разность подается на второй вход первого вычитателя 20 для сравнения с опорным уровнем, сформированным вторым аттенюатором 19. Полученный в результате сравнения разностный сигнал поступает на управляющий вход регулируемого усилителя 21, причем его отличие от заранее выбранной величины вызывает изменение коэффициента усиления этого усилителя, что приводит к изменению амплитуды поступающего на его вход опорного сигнала с генератора 22 опорной частоты. Выход регулируемого усилителя 21 соединен с вторым входом третьего сумматора 28, поэтому это изменение, определяющее симметричность расположения первого f1 и второго f2 стробируемых участков спектра относительно характерной точки fSo, совместно с сигналом рассогласования от второго вычитателя 27 вызывает соответствующее изменение расстояния между стробируемыми участками на шкале частот. К выходу третьего сумматора 28 подключены два канала, формирующие низкочастотные сигналы управления значением частот f1гет и f2гет перестраиваемых гетеродинов 38 и 42 и состоящие соответственно из амплитудных детекторов 36 и 40, и пятого 37 и шестого 41 ФНЧ, при этом точное значение частоты характерной точки fSo, соответствующее расстоянию между объектами Sо, пропорционально полусумме частот f1гет и f2гет, одновременно подстраивая результирующие частоты второго 11 и третьего 12 смесителей. Для получения численного значения добавки сигналы с выходов этих гетеродинов 38 и 42 подаются на осредняющие счетчики 39 и 43 и далее соответственно на второй и третий входы цифрового сумматора 10, где складываются со значением кода временной подставки с третьего выхода первого блока 3 синхронизации и формирования временной подставки.

Расширение зоны однозначного измерения расстояния на борту подвижного объекта без потери точности измерений в предлагаемом PD реализовано добавлением грубой шкалы отсчета измерительной системы. В данном случае частотное стробирование и выборку двух соответствующим образом разнесенных по частоте участков энергетического спектра выполняет отдельное устройство грубой обработки дальномерной информации, фильтрующая часть которого, как и в случае точной шкалы отсчета, построена по принципу "следящего" гетеродина. Эта система выполняет одновременное двухчастотное стробирование дальномерного энергетического спектра полосовыми фильтрами с фиксированными частотами настройки fSo и f0, что обеспечивает постоянную разницу частот.

Спектр преобразованного отраженного сигнала, поступающий с выхода первого приемника 8, переносится четвертым смесителем 13 в область промежуточной частоты f''IH, характерной для работы грубой шкалы, и двумя полосовыми фильтрами 44 и 52, частоты настройки которых соответственно равны f0 и fSo, осуществляется одновременное стробирование двух участков этого энергетического спектра в окрестности его нижнего края. Для повышения точности оценки энергии стробируемых участков спектра на выходе этих полосовых фильтров соответственно включены квадраторы 45 и 53 и ФНЧ 46 и 54. С выхода седьмого ФНЧ 46 сигнал, определяющий энергию спектральной составляющей опорного сигнала, поступает на вход аттенюатора 47, последовательно соединенного четвертым вычитателем 48, второй вход которого соединен с выходом восьмого ФНЧ 54. Полученный в результате сравнения сигнал 1 рассогласования характеризующий величину грубого уточнения расстояния Sо, определяется интегратором 49, накапливается и поступает на управляющий вход третьего перестраиваемого гетеродина 50, выход которого соединен с вторым входом четвертого смесителя 13, отслеживая происходящие за время измерения расстояния изменения. Для получения численного значения добавки сигнал с выхода третьего перестраиваемого гетеродина 50 поступает на третий осредняющий счетчик 51 и далее в виде цифрового кода на четвертый вход цифрового сумматора 10. Таким образом, выходной информацией цифрового сумматора 10 является полное прецизионное значение измеряемого между подвижными объектами расстояния Sо в виде многоразрядного цифрового кода.

Ведомая станция данного радиодальномера, представляет собой отдельный активный блок, работающий по принципу стандартного передатчика пачек ЛЧМ радиоимпульсов. Вторая антенна 55 принимает синхроимпульсы ведущей станции и через второй развязывающий блок 56 подает их на вход второго приемника 57, который их фильтрует, усиливает и пропускает на вход второго блока 58 синхронизации и формирования временной подставки, который, используя импульсный характер сигналов, обеспечивает заданный временной режим работы ведомой станции PD. Второй генератор 59 ЛЧМ импульсов вырабатывает последовательность радиоимпульсов с требуемыми параметрами, а второй формирователь 60 зондирующего и гетеродинного сигналов под воздействием управляющего сигнала, поступающего с второго выхода второго блока 58 синхронизации и формирования временной подставки, формирует из сигнала с выхода второго генератора 59 ЛЧМ последовательность радиоимпульсов с заданными параметрами. Этот сигнал усиливается во втором усилителе 61 и далее через второй развязывающий блок 56 поступает на вторую антенну 55, излучается ею на ведущую станцию PD и обрабатывается там в приемном тракте.

Отличительной особенностью квазикогерентной работы данного PD является то, что его ведущая станция излучает только синхроимпульсы, которые обеспечивают формирование и излучение ведомой станцией последовательности радиоимпульсов с заданными параметрами. В этом случае часть блоков, достаточно полно описанных в [3] , используется не в полном объеме, что абсолютно не влияет на качество работы всей системы.

Таким образом, предложенный квазикогерентный импульсный радиодальномер, использующий частотный метод измерения расстояния между произвольными подвижными объектами, при помощи двухшкальной измерительной системы в приемном тракте ведущей станции за счет обработки отраженного активным переотражателем ведомой станции сигнала решает поставленную задачу и получает заданный технический результат: необходимое расширение зоны однозначности измерений без потери прецизионной точности в реальном масштабе времени.

Алгоритм обработки дальномерной информации и выделения значения Sо расстояния между объектами в данном радиодальномере дополнен по сравнению с прототипом [3] использованием активного излучателя, повышающего его помехоустойчивость. Структурная схема предложенного PD значительно упростилась за счет применения простой ЛЧМ зондирующего сигнала, однако появился новый самостоятельный, активный блок - ведомая станция, представляющий собой стандартное излучающее устройство, состоящее из простых, типовых элементов, что, позволив решить поставленную задачу, незначительно усложнило схему всего PD, повысив качество его работы, но не повлияло на быстродействие, устойчивость, надежность и технологичность.

Пользуясь принципом построения данного радиодальномера на основе предложенного алгоритма обработки полезной информации, можно, используя любые типы модемов для идентификации подвижных объектов, таких как поезда, речные суда и т. д., расширить эту дальномерную систему до любого заданного числа участников, установив ведомые станции на каждом отдельном носителе и прецизионно определяя их местоположение. Увеличив число ведущих станций (n3) и синхронизировав их работу, можно решить задачу прецизионного отслеживания местоположения таких подвижных объектов, как самолеты, вертолеты, автомашины и т.д., в текущем режиме времени, превратив предложенную чисто дальномерную систему в координатную.

Источники информации.

1. Костецкая Я.М. Свето- и радиодальномеры. - Львов: Вища школа, 1986, с. 35 - 36.

2. Там же стр. 148 - 150.

3. Патент N2112250 (РФ). Радиовысотомер / В.Л.Захаров, Ю.М. Фатьянов, Л. Л. Захарова, К.В. Рослов - заявлено 10 апреля 1995 г.

Формула изобретения

Радиодальномер, ведущая станция которого содержит последовательное соединение первого генератора линейно-частотной модуляции импульсов и первого формирователя зондирующего и гетеродинного сигналов, второй вход которого соединен с вторым выходом первого блока синхронизации и формирования временной подставки, первый выход которого соединен как с входом первого генератора линейно-частотной модуляции импульсов, так и с входом первого усилителя, последовательно соединенного с первым развязывающим блоком и первой антенной, к второму выходу первого развязывающего блока последовательно подключены первый смеситель, второй вход которого соединен с вторым выходом формирователя зондирующего и гетеродинного сигналов, первый приемник, выход которого параллельно соединен с вторым, третьим и четвертым смесителем, блок поиска по дальности и первый блок синхронизации и формирования временной подставки, третий выход которого соединен с первым входом цифрового сумматора, второй смеситель, к выходу которого параллельно подключены последовательное соединение первого полосового фильтра, первого квадратора, первого фильтра нижних частот, первого сумматора, первого аттенюатора, второго аттенюатора, первого вычитателя и регулируемого усилителя, второй вход которого соединен с выходом генератора опорной частоты, и последовательное соединение второго полосового фильтра, второго квадратора, второго фильтра нижних частот, второго сумматора, второго вычитателя, второй вход которого соединен с выходом первого аттенюатора, и третьего сумматора, второй вход которого соединен с выходом регулируемого усилителя, третий смеситель, к выходу которого параллельно подключены последовательное соединение третьего полосового фильтра, третьего квадратора, третьего фильтра нижних частот, выход которого соединен с вторым входом второго сумматора, и третьего вычитателя, второй вход которого соединен с выходом второго фильтра нижних частот а выход соединен с вторым входом первого вычитателя, и последовательное соединение четвертого полосового фильтра, четвертого квадратора, четвертого фильтра нижних частот, выход которого соединен с вторым входом первого сумматора, к выходу третьего сумматора параллельно подключены последовательное соединение первого амплитудного детектора, пятого фильтра нижних частот, первого перестраиваемого гетеродина, выход которого соединен с вторым входом второго смесителя, и первого осредняющего счетчика, выход которого соединен с вторым входом цифрового сумматора, и последовательное соединение второго амплитудного детектора, шестого фильтра нижних частот, второго перестраиваемого гетеродина, выход которого соединен с вторым входом третьего смесителя, и второго осредняющего счетчика, выход которого соединен с третьим входом цифрового сумматора, четвертый смеситель, к выходу которого параллельно подключены последовательное соединение пятого полосового фильтра, пятого квадратора, седьмого фильтра нижних частот, третьего аттенюатора, четвертого вычитателя, интегратора, третьего перестраиваемого гетеродина, выход которого соединен с вторым входом четвертого смесителя, и третьего осредняющего счетчика, выход которого соединен с четвертым входом цифрового сумматора, и последовательное соединение шестого полосового фильтра, шестого квадратора, восьмого фильтра нижних частот, выход которого соединен с вторым входом четвертого вычитателя, причем выход цифрового сумматора, является выходом дальномера, выдающим в цифровой форме информацию о расстоянии между ведущей и ведомой станциями, отличающийся тем, что введен самостоятельный активный блок-ведомая станция, которая содержит последовательное соединение второй антенны, второго развязывающего блока, второго приемника, второго блока синхронизации и формирования временной подставки, второго генератора линейно-частотной модуляции импульсов, второго формирователя зондирующего и гетеродинного сигналов, второй вход которого соединен с вторым выходом второго блока синхронизации и формирования временной подставки, и второго усилителя, выход которого соединен с первым входом второго развязывающего блока.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к радиолокации и может использоваться в системах поиска и сопровождения воздушных объектов

Изобретение относится к радиотехнике и предназначено для определения высоты полета ИСЗ, параметров гравитационного поля Земли, определения фигуры геоида, рельефа поверхности суши, топографии ледовых полей и океана, в частности высоты океанических волн

Изобретение относится к области радиолокации и может быть использовано в системах поиска и многоцелевого сопровождения воздушных объектов

Изобретение относится к радиолокационной технике и может быть использовано при расчете высоты полета летательных аппаратов в системах радиолокации

Изобретение относится к радиолокационным системам, в частности к системам с непрерывным излучением сигнала, и может использоваться для точного определения высот в космической технике при спуске летательного аппарата

Изобретение относится к устройствам измерения высоты воздушного судна над поверхностью Земли /на малых высотах/ и скорости ее измерения

Изобретение относится к радиовысотометрии

Изобретение относится к метеорологической радиолокации

Изобретение относится к измерительной технике, в частности к СВЧ-измерителям расстояния до отражающего объекта, и может применяться, например, для измерения уровня жидкости (нефтепродуктов) в резервуарах

Изобретение относится к испытаниям средств радиотехнической разведки (РТР)

Изобретение относится к области радиолокационной техники и может быть использовано в системах поиска и слежения

Изобретение относится к области измерительной техники и может быть использовано в устройстве обработки информации локаторов

Изобретение относится к радионавигации и может быть использовано для калибровки радиодальномеров в процессе их производства и при вводе в эксплуатацию

Изобретение относится к радиотехнике и может быть использовано в ближайшей радиолокации

Изобретение относится к радиотехническим средствам местоопределения источников электромагнитного излучения, в частности к способам пассивной дальнометрии источников электромагнитных сигналов, и может быть использовано в метеорологии и в гражданской авиации для оперативного наблюдения за грозовой деятельностью на расстояниях 300 2000 км

Изобретение относится к радиотехнике и предназначено для прецизионного определения расстояния между произвольными подвижными объектами в любой момент времени
Наверх