Способ определения содержания примесных химических элементов в природных и промышленных водах и устройство пробоотборника


G01N1/10 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

 

Группа изобретений применима в области инструментального химического анализа в экологии, в частности, в области анализа природной воды, ее растворов и промышленных сточных вод. При осуществлении способа анализируемые элементы концентрируют на не содержащих эти элементы и маскирующие примеси ионитах в виде 1-5 гранул размером 10-1000 мкм с последующим рентгеноспектральным микроанализом ионитов. Устройство пробоотборника включает пропускную систему, в которой установлена пластина с вмонтированными в нее 1-5 гранулами ионита размером 10-1000 мкм, а в пластине выполнены сквозные каналы для прохождения анализируемой жидкости. Достигается повышение чувствительности, упрощение и ускорение анализа. 2 с. п.ф-лы, 1 ил.

Изобретение относится к области инструментального химического анализа в экологии, в частности, к области анализа природной воды, ее растворов и промышленных сточных вод. Требования, предъявляемые к измерениям в области экологии, характеризуются необходимостью высокой чувствительности при регистрации вредных примесей, экспрессности анализа и его упрощения в части пробоотбора, транспортировки проб, аналитического процесса.

Известны инструментальные безреагентные способы анализа содержания примесей в воде, заключающиеся в измерениях сухих остатков водных проб. Метод гравиметрии используется в сочетании с различными способами концентрирования и имеет абсолютную чувствительность до 10-5 г /Унифицированные методы анализа вод. П/р Ю. Ю. Лурье.- М.: Химия, 1971, 375 с./, что во многих случаях является недостаточным. Другими недостатками этого способа являются длительность и трудоемкость. Метод пьезомикровзвешивания, состоящий в измерении ухода резонансной частоты с увеличением осадка на пластине из пьезоматериала, имеет более высокую чувствительность (до 10-9 г/Гц или до 10-11 г)/ М.С. Чупахин и др. Анализ атмосферных аэрозолей методом пьезокварцевого микровзвешивания. Ж. Аналитическая химия, 1978, т.33, N6, с.1175-1183/. Однако сложная электронная система измерений и ее ненадежность для анализа жидких сред не позволяет использовать этот метод для анализа водных проб.

Радиоаналитические методы (радиоиндикаторные, нейтроно-активационные и др.) имеют абсолютную чувствительность до 10-10 - 10-12 г /Ю. Тельдеши, Ю.В. Яковлев, Г. Н. Билимович. Диагностика окружающей среды радиоаналитическими методами. -М.: Энергоатомиздат, 1985, 193 с./.

Недостатками являются трудность учета радиоактивного фона, сложности в приготовлении пробы, необходимость наличия ядерного реактора в нейтроно-активационном анализе и др., что значительно ограничивает их применения. Методы атомной спектроскопии (атомно-абсорбционая и атомно-флуоресцентная спектроскопия) обладают высокой чувствительностью до 10-11 - 10-13г /А.З. Рязапов. Оценка чувствительности атомно-абсорбционной и флуоресцентной спектроскопии с электротермической атомизацией проб/. Благородные металлы и алмазы в новых областях техники: Сб.научных трудов института Гиналмаззолото,- М. : ЦНИИцветмет, 1991, с. 173-180. Т.К. Айдаров и др. Спектральные методы определения вредных неорганических веществ в природных и сточных водах и воздушной среде. Аналитическое приборостроение. Методы и приборы для анализа жидких сред. Матер. Всес.совещания, Тбилиси, 1976, с.375-380, /и находят достаточно широкое применение в анализе воды. При этом их существенными недостатками являются следующие. Пробу необходимо довести до атомарного состояния (т. н. атомизация), что значительно усложняет пробообразование. Например, сжигание пробы в пламени электротермическим путем приводит к значительным энергозатратам. Малое время пребывания анализируемых атомов в пламени снижает чувствительность и ухудшает метрологические характеристики.

Существенными недостатками методов атомной спектроскопии являются сложность и длительность приготовления объектов для получения оптических спектров. Например, для приготовления пробы для анализа осадков на фильтре приходится проводить озоление при 600oC, либо растворять смесью кислот материал фильтра и выделять центрифугированием анализируемое вещество, после чего проводить сжигание в источнике возбуждения спектров (пламени). Известен метод лазерной масс-спектроскопии, обладающий высокой чувствительностью до 10-13 - 10-16 г /В.Н. Назаров и др. Анализ неорганических растворов методом лазерной масс-спектрометрии с ионнообменным концентрированием примесей в высокопористом слое кремния. Ж. Аналит.химия, 1991, т.46, N9, с. 1760-1766/. Однако сложность и малодоступность аппаратуры, а также трудности с приготовлением стандартов делают затруднительным использование этого метода в широких масштабах, необходимых в области экологии. Также высокую чувствительность до 10-11 - 10-15 г имеют методы вторично-ионной масс-спектрометрии, оже-спектрометрии, фотоэлектронной спектроскопии /Ф.А. Гимельфарб. От микро- к аттоанализу (Проблемы локального анализа и анализа поверхности). Российский химический журнал, 1994, T.XXXVIII (Проблемы аналитической химии), С.58-64./. При этом методы являются в основном качественными, в некоторых случаях полуколичественными, вследствие серьезных трудностей в приготовлении образцов сравнения и в разработке адэкватных физических моделей. В количественном отношении более развит высокочувствительный (до 10-16г) метод электронно-зондового рентгеноспектрального микроанализа /Растровая электронная микроскопия и рентгеноспектральный микроанализ (часть II). Дж.Голдстейн и др. , п/р В. И. Петрова, -М.: Мир, 1984, 349 с./, но существующие трудности приготовления водных проб, например, путем упаривания также снижают его эффективность.

Таким образом, вышеописанные методы имеют либо низкую чувствительность, либо являются длительными, трудо- и энергоемкими в отношении приготовления проб и проведения анализов, требующими сложного оборудования, в ряде методов возникают трудности с приготовлением образцов сравнения.

Цель изобретения состоит в повышении чувствительности и экспрессности анализа, а также в его упрощении.

Поставленная цель достигается за счет концентрирования определяемых примесных элементов на отдельных миниатюрных гранулах сорбента, воспроизводимых по весу и размеру.

Особенность такого способа заключается в концентрации на грануле примесных элементов из сильно разбавленных водных растворов за короткое время с последующим рентгеноспектральным микроанализом каждой отдельной гранулы. Эффективность такого способа анализа определяется, во-первых, чистотой самого сорбента (ионита), которая достигается путем отмывки сорбента и контролируется анализом состава ионита, который не должен содержать анализируемые элементы (например, тяжелые металлы) и маскирующие примеси (например, фосфор, серу). Из промышленных ионитов достаточно чистыми являются, например, КБ4, КБ4П2, АНКБ-2, АН-31. Во-вторых, эффективный индустриальный контроль обеспечивается простотой пробоотбора, пересылки проб, их архивирования. Возможность брать, хранить и пересылать пробы воды и ее растворов в виде миниатюрных гранул ионитов позволяет проводить множество измерений и при необходимости выполнять мониторинг состояния воды. В третьих, рентгеноспектральный микроанализ гранулы ионита обеспечивает результат измерения содержания примесного элемента за несколько минут с чувствительностью до 10-16 г/л, которая является в настоящее время одной из самых высоких в инструментальном анализе, намного перекрывающей величины предельно допустимых концентраций (ПДК) по вредным примесям при удовлетворительной точности (около 2 отн.%) и относительной простоте рентгеноспектрального анализа/ Растровая электронная микроскопия и рентгеноспектральный микроанализ (часть II) Дж.Голдстейн и др. , п/р В.И. Петрова,- М.: Мир, 1984, 349 с./. Кроме того, неразрушающий характер анализа позволяет проводить повторные измерения, например, на другом приборе.

Наиболее близким к заявляемому способу является способ анализа, заключающийся в концентрировании примесей на ионитах в колонках, смывке ионита промывающим раствором, упариванием воды и рентгеноспектральным анализом осадка /Заявка N 53-37148(025 D 21/16, 1978, N 11, Япония. Ионнообменное концентрирование тяжелых металлов/. Наиболее близким к заявляемому устройству является устройство для отбора проб, содержащее колонку с загруженным ионитом, имеющую вход и выход для подачи и слива жидкости /А.С. N 801879, B ОI 47/02 от 07.02.1981 г., СССР. Устройство для отбора проб/. Недостатками известного способа (прототипа) являются низкая чувствительность, длительное время и трудоемкость анализа. Это объясняется тем, что процесс сорбции и отмывки в сорбционной колонке длителен и трудоемок, требует дополнительных реагентов. Низкая чувствительность обусловлена большим объемом сорбента, по которому распределены сорбированные примеси. Повышение их концентрации за счет длительного пропускания жидкости через колонку увеличивает время анализа и требует больших анализируемых объемов.

Недостатком известного устройства (прототипа) является то, что конструкция пробоотборника не позволяет работать с малым количеством ионита и в полевых условиях.

Техническая задача изобретения состоит в увеличении чувствительности анализа, сокращении времени и упрощении анализа, а также в разделении процесса пробоотбора, хранения, транспортировки проб с их лабораторным анализом в удобное время в стационарной или передвижной лаборатории. Отсутствие необходимости доставки в лабораторию больших объемов анализируемой воды и возможность многократных повторных измерений, в том числе и на других приборах, также входит в техническую задачу изобретения.

Технический результат при осуществлении заявленного способа состоит в том, что в качестве сорбента применяются иониты в виде одной или нескольких гранул размером 10-1000 мкм и массой соответственно 10-9 - 10-30г. Чем миниатюрнее гранула, тем выше чувствительность и экспрессность анализа, так как за короткое время на ионите создается большая концентрация определяемых элементов, однако слишком малый размер гранулы создает трудности при ее монтаже и извлечении. Оптимальными размерами являются 100-50 мкм. Помимо указанных ионитов подходящим сорбентом может быть пористый полистирол с гранулами 100-200 мкм в диаметре и весом 1-8 мкг. Относительная спектральная чистота полистирола позволяет определить наличие любого элемента тяжелее натрия. Следы тяжелых элементов в потоках воды возможно обнаружить при использовании фосфорно-кислых ионитов типа полиакрилов в сочетании с другими ионитами. Для этого используют конструкцию проточного пробоотборника, который содержит одну или несколько гранул, омываемых потоком воды или водного раствора, закрепленных в кассете в виде пластины. Кассета подключается к мерному объему анализируемой жидкости, либо омывается непрерывным потоком жидкости в водоеме или в резервуаре. Пропущенная через пробоотборник вода при необходимости может быть дополнительно проанализирована на органические примеси и т. п. Таким образом, миниатюрная гранула ионита, закрепленная в кассете, на которой может быть нанесена вся необходимая информация (место и дата пробоотбора, условия пробоотбора и др.), становится носителем подлежащих определению примесных химических элементов.

Сравнительный анализ с прототипом способа показал, что заявленный способ, отличающийся тем, что вместо концентрирования примесей на сорбенте в колонках, последующей смывки сорбированных примесей специальными растворами, их упаривания и дальнейшего анализа сухого остатка, концентрирование производят непосредственно на отдельных миниатюрных гранулах ионитов и проводят анализ непосредственно этих гранул в высушенном состоянии.

Заявленное устройство отбора проб (см. чертеж) отличается от прототипа тем, что вместо сорбционной колонки с загруженными в нее гранулами сорбента применяют кассету, в которой установлена пластина с вмонтированной в нее одной или несколькими миниатюрными гранулами ионита. Эти гранулы омываются потоком анализируемой жидкости, протекающей через входной и выходной патрубки.

Заявленный способ и заявленное устройство соответствуют критерию охраноспособности изобретения "новизна". Сопоставление с уровнем техники показало, что в заявленном техническом решении результат получается за счет отличительных признаков, не вытекающих явным образом из известных технических решений, что соответствует критерию "изобретательский уровень".

Обозначения на чертеже: 1 - кассета, 2 - выпускные патрубки, 3 - впускной патрубок, 4 - крышка кассеты, 5 - пластина с гранулами сорбента.

Пример 1. Через трубку с вмонтированной в ней гранулой ионита полиакрилата размером 500 мкм в течение 30 мин пропускают 1 л воды, содержащей введенные примеси элементов: U(~10-4 г/л), Fe(~10-7 г/л), Cu(~10-5 г/л), Zn(~ 10-5 г/л), Cr(~ 10-5 г/л), Pb(~10-9 г/л). После этого гранулу извлекают из трубки, покрывают тонким токопроводящим покрытием и в течение 15 мин производят определение элементов, содержащихся в воде, при помощи, например, рентгеноспектрального микроанализатора JSM 35 CF с приставкой LINK. В результате установлено наличие в грануле одновременно всех 6-ти введенных элементов в количестве: U (3,5 мас.%), Fe (0,05 мас.%), Cu (1,1 мас.%), Zn(1,0 мас.%), Cr(0,1 мас.%), Pb (0,3 мас.%). Время, необходимое на пробоподготовку и анализ, находится в пределах 100 мин, в то время как для прототипа оно составляет несколько часов для определения одного элемента.

Пример 2. Берут гранулу ионита АНКБ-2 размером 100 мкм, монтируют в устройство для отбора проб (кассету в виде пластины). Затем через гранулу пропускают 250 мл водного раствора ацетата свинца, содержащего 7,5 мкг свинца, что соответствует ПДК на свинец, равной 3.10-5 г/л. Затем с гранулой производят действия подобно примеру 1.

Измеренная концентрация Pb в грануле составляет 1,4 мас.%. Так как предельно регистрируемая указанным методом концентрация свинца составляет 0,1-0,01 мас. %, то чувствительность заявленного метода в данном случае составляет 10-13 г/л, что превышает ПДК по свинцу на 1, 2 порядка. При пропускании через гранулу сорбента 1 м3 жидкости чувствительность увеличивается до 10-16 г/л. Время, необходимое для отбора пробы и анализа, составляет около 60 мин, в то время как для прототипа это время составляет несколько часов в условиях большой трудоемкости и сложности анализа. Таким образом, по чувствительности, экспрессности и простоте анализа заявленный способ и заявленное устройство превосходят прототип.

Формула изобретения

1. Способ определения примесей химических элементов, например тяжелых металлов, в воде и в ее растворах, включающий концентрирование анализируемых элементов сорбентом, получение рентгеновских спектров сорбента и определение по спектрам типа и количества примесей, отличающийся тем, что в качестве сорбента применяют иониты, не содержащие анализируемые элементы и маскирующие примеси, в виде 1 - 5 гранул размером 10 - 1000 мкм, сорбируют на грануле примесные элементы из анализируемого объема жидкости и методом рентгеноспектрального микроанализа определяют примеси с чувствительностью до 10-16 г/л.

2. Устройство пробоотборника для реализации способа по п.1, состоящее из пропускной системы для протока жидкости, в которой размещен сорбент, отличающийся тем, что пропускная система представляет собой кассету, в которой установлена пластина с вмонтированными в нее 1 - 5 гранулами ионита размером 10 - 1000 мкм и с выполненными в кассете входным и выходным патрубками для прохождения анализируемой жидкости, омывающей гранулу.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к охране окружающей среды, а именно к способам обнаружения микроколичеств нефтепродуктов (НП) в воде, и может быть использовано в контроле загрязнения НП природных и сточных вод

Изобретение относится к области аналитической химии, а именно исследованию и анализу материалов путем выделения их из сложных матриц

Изобретение относится к области аналитической химии, а именно к способам определения микроколичеств ртути и может быть использовано для экспресс-анализа объектов окружающей среды

Изобретение относится к аналитической химии, а именно к способам определения микроколичеств метилртути, и может быть использовано для экспресс-анализа объектов окружающей среды

Изобретение относится к области исследования свойств воды, используемой в системах водоснабжения, и может быть применено при эксплуатации охлаждающих систем, систем горячего водоснабжения и теплоснабжения

Изобретение относится к области сельского хозяйства, а именно к способам оценки фитотоксичности почвы и воды, загрязненных тяжелыми металлами, пестицидами и другими поллютантами

Изобретение относится к методам аналитического определения остаточного количества синтетических полиакриламидных катионных флокулянтов в питьевой воде после очистки сточных вод и может быть использовано в пищевой промышленности

Изобретение относится к спектральным методам анализа благородных металлов, а именно к подготовке стандартных образцов, содержащих благородные металлы, для спектрального анализа

Изобретение относится к области исследования кластеров металлов или сплавов, получаемых в сверхзвуковом сопле плазмогазодинамической установки
Изобретение относится к медицине, а именно к морфологии и может быть использовано для гистохимических исследований гликозаминогликанов (ГАГ) тканей
Изобретение относится к медицине, а именно к морфологии и может быть использовано для гистохимических исследований гликозаминогликанов (ГАГ) тканей

Изобретение относится к области исследования химических и физических свойств веществ, в частности при проведении рентгеноспектрального анализа горных пород

Изобретение относится к технике отбора проб газов высокого давления и может быть использовано для анализа и контроля содержания механических твердо-дисперсных частиц (примесей) в сжатых газах (в воздухе, азоте, гелии, водороде, аргоне, неоне, ксеноне, кислороде и других газах), применяемых в ракетно-космической технике, авиации, машиностроении и в других отраслях народного хозяйства

Изобретение относится к нефтепромысловому оборудованию и может быть использовано для интегрального отбора пробы многокомпонентных газожидкостных систем, транспортируемых по трубопроводам

Изобретение относится к механическим испытаниям образцов металлов в контакте с жидким припоем, в частности к испытаниям на определение зарождения и роста трещины под действием растягивающих напряжений

Изобретение относится к методам исследований, в частности к устройствам для подготовки гистологических образцов для микроскопических исследований

Изобретение относится к методам исследований, в частности к устройствам для подготовки гистологических образцов для микроскопических исследований
Наверх