Форсунка для нанесения строительных растворов

 

Изобретение относится к устройствам для нанесения строительных растворов в воздушной среде и может быть использовано в качестве оконечного модуля в роботизированных комплексах для нанесения различных покрытий, в частности при отделочных работах в строительстве, для набрызг-бетона в угольной отрасли и в других областях промышленности. Форсунка содержит корпус, каналы для подвода строительного раствора и сжатого воздуха, камеру, переходящую в сопло Лаваля. Внутри камеры располагается сердечник. В сердечнике установлен стержень, один конец которого соединен со штоком пневмоцилиндра одностороннего действия, а другой - выходит в сопло Лаваля и имеет форму усеченного конуса. Причем в стержне выполнен канал, который используется в качестве датчика давления. Сжатый воздух из пневмосистемы подается по магистрали через регулируемые дроссели. При этом регулирующий элемент дросселя посредством магистрали соединен с каналом стержня. Техническое решение позволит обеспечить бесступенчатое регулирование площади сечения кольца факела распыла, а также повысить производительность форсунки и качество получаемых покрытий. 1 ил.

Изобретение относится к устройствам для нанесения строительных растворов в воздушной среде и может быть использовано в качестве оконечного модуля в роботизированных комплексах для нанесения различных покрытий, в частности при отделочных работах в строительстве и в других областях промышленности.

Качество наносимого покрытия зависит от конструкции форсунки, параметров раствора, давления воздуха в магистрали и при неизменных названных характеристиках зависит от постоянства расстояния между наружной плоскостью форсунки и обрабатываемой поверхностью. Причем толщина и однородность наносимого покрытия напрямую зависит также и от скорости выходной струи, а оптимальное указанное расстояние зависит от всех перечисленных факторов и определяется возможностью прочного сцепления наносимого покрытия с материалом поверхности и слоев покрытия между собой без образования наплывов, потеков и т.д.

Регулировка количества наносимого покрытия, а следовательно, и скорости выхода частиц раствора, может осуществляться с помощью изменения площади выходного сечения форсунки.

Известны технические решения форсунок [1,2], которые имеют постоянные площади выходных сечений, и вследствие этого необходимо предъявлять повышенные требования к системам автоматического управления устройствами для нанесения покрытий с целью поддержания постоянного расстояния от форсунки до обрабатываемой поверхности.

Кроме того, указанные конструкции не позволяют поддерживать постоянным качество наносимого покрытия при изменении технологических свойств (вязкости, пластичности, текучести и др.) рабочего раствора.

В связи с необходимостью нанесения строительных растворов различной пластичности выпускаются форсунки с набором сменных наконечников и отверстиями разных диаметров. Поэтому при изменении пластичности, вязкости и других свойств состава необходимо производить смену наконечника с соответствующим диаметром отверстия для каждого типа покрытия, что увеличивает время выполнения работ и снижает производительность труда. Это связано с невозможностью бесступенчатого регулирования размеров факела распыла в существующих конструкциях.

Наиболее близким к заявляемому по техническому решению является форсунка для распыления жидкости [3]. Ее конструкция представляет собой корпус с каналами для подвода жидкости и газа и камерой, переходящей в сопло Лаваля, в которой размещен центральный сердечник в виде трубки, выходной конец которой находится в сверхзвуковой части сопла Лаваля. В сердечнике установлен с возможностью осевого перемещения шток с наконечником.

Данной конструкции, так же как и другим выпускаемым форсункам, присущ указанный выше недостаток, состоящий в невозможности бесступенчатого регулирования размеров кольцевого факела распыла при изменении технологических свойств растворной смеси.

Строительные растворы относятся к упруговязкопластичным смесям ([4], с. 5), расход Q для которых прямо пропорционально зависит от давления (перепада давления) и обратно пропорционально зависит от вязкости смеси ([5], формула IV.20, с.68): где R - радиус трубопровода; l - длина трубопровода; - вязкость раствора; - потери давления на трение; 0 - перепад давления, при котором раствор в трубе радиуса R начинает двигаться.

Следовательно, при изменении вязкости раствора для поддержания его постоянного расхода, необходимо изменять величину давления воздуха и площадь кольцевого зазора факела распыла, а качество наносимого покрытия будет определяться постоянством их соотношения.

Целью настоящего изобретения является обеспечение бесступенчатого регулирования внутреннего диаметра и площади сечения кольца факела распыла, а также повышение производительности работы форсунки и качества наносимого покрытия.

Указанная цель достигается тем, что в конструкцию форсунки вводится устройство для регулирования площади кольцевого факела распыла, установленное в сверхзвуковой части сопла Лаваля и представляющее собой стержень, выходной конец которого имеет коническую форму, а другой конец связан со штоком пневмоцилиндра. Тем самым в зависимости от пластичности смеси изменяется сила лобового сопротивления воздуха при движении раствора после выхода из сопла, пропорциональная квадрату скорости перемещения частиц наносимой смеси и давление между срезом форсунки и обрабатываемой поверхностью, которое и используется в качестве индикатора для поддержания оптимальных расстояния до обрабатываемой поверхности, давления воздуха в напорной магистрали и площади кольцевого факела распыла.

Существенными отличиями предлагаемого изобретения являются: - выполнение устройства для бесступенчатого регулирования диаметра и площади сечения кольца факела распыла в виде стержня, цилиндрическая часть которого сопряжена посредством конической поверхности со сферическим выходным концом стержня; - выполнение в стержне канала, используемого в качестве датчика давления; - использование пневмоцилиндра одностороннего действия для перемещения стержня; - установка перед поршневой полостью пневмоцилиндра и в магистрали подвода воздуха в форсунку регулируемых дросселей, причем регулирующий элемент дросселя в магистрали подвода воздуха связан с каналом стержня.

На чертеже представлен общий вид форсунки.

Форсунка содержит корпус 1, каналы для подвода строительного раствора 2 и сжатого воздуха 3, смесительную камеру 4, переходящую в сопло Лаваля 5. Внутри смесительной камеры 4 размещен центральный сердечник 6, выполненный в виде трубки, выходной конец которой находится в сверхзвуковой части сопла Лаваля 5. В сердечнике 6 с возможностью осевого перемещения установлен стержень 7, в котором выполнен канал 8, использующийся в качестве датчика давления. Один конец стержня 7 соединен со штоком пневмоцилиндра 9 одностороннего действия, а второй, имеющий коническую поверхность, расположен в выходной части сопла Лаваля 5. Сжатый воздух подается в поршневую полость пневмоцилиндра 9 через регулируемый дроссель 10, а в канал 3 - через регулируемый дроссель 11, регулирующий элемент которого магистралью 12 соединен с каналом 8 стержня 7.

Работает форсунка следующим образом. Вначале в форсунку через дроссель 11 и канал 3 подают сжатый воздух. Рабочий раствор поступает из емкости (не показана) под давлением через канал 2 в кольцевую выпускную область трубки 6, образованную ее боковой поверхностью и стержнем 7. Затем раствор попадает через открытый торец трубки 6 в расширяющуюся часть сопла 5 и в виде кольцевого факела распыла наносится на обрабатываемую поверхность. При этом давление в канале 8 равно давлению в области между срезом форсунки и обрабатываемой поверхностью, расход воздуха через дроссели 10 и 11 постоянный.

Шток пневмоцилиндра 9 находится в положении, при котором кольцевой зазор имеет некоторую среднюю величину, определяемую степенью настройки дросселя 10. Описанный случай соответствует работе форсунки с постоянным давлением в зоне набрызга на стержень 7 и с растворной смесью средней пластичности.

При увеличении пластичности раствора будет происходить возрастание скорости выхода струи из форсунки и, следовательно, увеличение количества выходящей смеси и толщины слоя наносимого покрытия. Поэтому для получения однородного покрытия и сохранения его качества необходимо уменьшить расстояние до обрабатываемой поверхности и снизить количество подаваемой смеси.

При увеличении пластичности раствора и изменении в связи с этим вышеуказанных параметров увеличится скорость выхода частиц раствора из кольцевого зазора, что приведет к одновременному возрастанию давления в пространстве между срезом форсунки и обрабатываемой поверхностью в канале 8 стержня 7 и магистрали 12. При этом изменится положение регулирующего элемента дросселя 11, который уменьшит количество воздуха, подаваемого в канал 3 и, следовательно, снизит количество выходящего из кольцевого зазора форсунки раствора. Также снизится и давление в поршневой полости пневмоцилиндра 9, шток которого при этом переместится влево и уменьшит площадь кольцевого зазора, что приведет к восстановлению постоянного соотношения между параметрами, входящими в уравнение (1), и повышению качества наносимого покрытия.

В случае работы форсунки с растворами пониженной пластичности скорость выхода струи уменьшится, и для поддержания толщины покрытия на постоянном уровне следует увеличить расстояние до обрабатываемой поверхности и также увеличить количество подаваемой смеси. Снижение скорости выхода раствора приведет к падению давления в канале 8 и магистрали 12 - регулирующий элемент дросселя 11 увеличит расход воздуха, подаваемого в канал 3, а пневмоцилиндр 9 переместит шток вместе со стержнем 7 вправо, что приведет к увеличению площади кольцевого факела распыла и росту количества наносимого раствора.

Таким образом, будет осуществляться бесступенчатое регулирование размеров кольцевого факела распыла в зависимости от изменения технологических свойств растворной смеси.

Источники информации 1. А. c. СССР 1703186, МКИ B 03 B 1/06 Распылитель жидкости/С.А.Слива (СССР). Заявл. 18.04.89; Опубл. 07.01.92, Бюл. N 1.

2. А. с. СССР 1713660, МКИ B 05 B 1/04 Распылитель /Б.Е.Кацай, О.В.Хабаров (СССР). Заявл. 27.12.90; Опубл. 23.02.92, Бюл. N 7.

3. А.с. СССР 1514417, МКИ B 05 B 7/00, 7/12 Форсунка для распыления жидкости /В. А. Васильев, Ю.М.Рудов (СССР). Заявл. 11.01.88; Опубл. 15.10.89, Бюл. N 38.

4. Огибалов П. М. , Мирзаджанзаде А.Х. Нестационарные движения вязкопластичных сред. Изд. МГУ, 1977. - 372 с.

5. Мирзаджанзаде А.Х., Караев А.К., Ширинзаде С.А. Гидравлика в бурении и цементировании нефтяных и газовых скважин.- М.: Недра, 1977. - 230 с.

Формула изобретения

Форсунка для нанесения строительных растворов, содержащая корпус с каналами для подвода раствора, сжатого воздуха и камерой, переходящей в сопло Лаваля, с размещенным в ней центральным сердечником, выполненным в виде трубки, отличающаяся тем, что в сердечнике с возможностью осевого перемещения установлен стержень, один конец которого имеет коническую форму и находится в сопле Лаваля, а его второй конец соединен со штоком пневмоцилиндра одностороннего действия, в напорной магистрали поршневой полости пневмоцилиндра и канале подвода сжатого воздуха установлены регулируемые дроссели, причем регулирующий элемент последнего магистралью соединен с каналом, выполненным в стержне.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к окрасочной технике, в частности к краскораспылителям пневматического распыления, Технический результат - повышение точности регулирования и стабильности производительности, а также сокращение потери краски

Изобретение относится к технике для распыления жидкости и может быть использовано для увлажнения и очистки воздуха и дымовых газов на ТЭЦ, мойки и покраски предметов в строительстве и машиностроении

Изобретение относится к устройствам для распыления и нанесения жидкостей на поверхность изделий и может быть использовано в хлебопекарной промышленности для нанесения растительного масла на внутренние поверхности хлебопекарных форм при выпечке хлеба

Изобретение относится к вспомогательному оборудованию, используемому в строительстве, в частности к устройствам для нанесения защитно-декоративного покрытия на поверхность строительных изделий

Изобретение относится к устройствам для распыления жидкостей с помощью газа и может быть использовано для нанесения тепловой, акустической противокоррозионной изоляции, быстрозастывающих покрытий на поверхность оборудования, трубопроводов

Изобретение относится к конструкции пневматической форсунки для агрессивных жидкостей и может быть использовано в химической и других отраслях промышленности для распыления агрессивных жидкостей, суспензий, растворов, например для нанесения покрытий на поверхности

Изобретение относится к способам распыления жидкости в технологических процессах, требующих высокого качества распыления, например в сельском и лесном хозяйствах для диспергирования и нанесения ядохимикатов или других физиологически активных веществ, в том числе биопрепаратов (бактериальных и вирусных), на растения для защиты их от болезней и вредных насекомых способами, щадящими окружающую среду

Изобретение относится к устройствам для нанесения лакокрасочных покрытий с пневматическим и кинетическим распылением краски

Изобретение относится к распылению жидких и текучих веществ и может быть использовано в химической, металлургической, лакокрасочной, металлообрабатывающей промышленности, в различных отраслях машиностроения, в частности при приготовлении коллоидных растворов, нанесении лакокрасочных и защитных покрытий на поверхности изделий, а также при охлаждении проката и деталей, обрабатываемых резанием и т.п

Изобретение относится к технике распыления жидкостей и прочих текучих веществ, порошков, а также сред, содержащих разнородные компоненты или плохо смешиваемые механическим путем жидкости

Изобретение относится к технике нанесения порошковых полимерных покрытий в электростатическом поле

Изобретение относится к устройству (1) для введения жидкости в сыпучие сухие вещества, прежде всего в муку для приготовления кляра

Изобретение относится к устройствам распыления жидкости и может быть использовано для пылеподавления, орошения, в пожаротушении и др., где требуется быстрое создание большого объема распыленной жидкости, тумана, снега в различных температурных интервалах

Изобретение относится к машиностроению и может применяться в различны отраслях, в т.ч

Изобретения относятся к многокомпонентным системам распыления и могут быть использованы в системах сброса давления в поршневых и жидкостных дозаторах, оснащенных по крайней мере двумя насосами. Перепускной клапан состоит из корпуса клапана и первичного и вторичного разгрузочных клапанов. В состав корпуса клапана входят два впускных отверстия, два выпускных отверстия и два выхода избыточного давления, предназначенных для направления жидкости соответственно из двух отверстий в корпусе клапана. Впускные отверстия предназначены для подсоединения к выходам жидкостных насосов. Выпускные отверстия предназначены для направления жидкости из соответствующих впускных отверстий корпусов клапана. Выходы избыточного давления предназначены для направления жидкости соответственно из двух отверстий в корпусе клапана. Первый и второй предохранительные клапаны перекрывают два впускных отверстия, два выпускных отверстия и, соответственно, два выхода избыточного давления. Каждый предохранительный клапан состоит из пружинного клапана избыточного давления, который предназначен для подключения впускной магистрали к выходу избыточного давления при превышении этого давления. Предохранительный клапан состоит также из ручной заслонки. Заслонка в первом положении подсоединяет впускную магистраль к выходу, не оказывая влияния на работу клапана избыточного давления. Во втором положении заслонка подключает впускную магистраль к выходной магистрали избыточного давления при открытом клапане избыточного давления. Жидкостный дозатор может быть выполнен с двумя насосами и перепускными клапанами. Техническим результатом группы изобретений является обеспечение возможности предотвращения повреждения оборудования и возникновения небезопасных условий работы, а также обеспечение необходимого уровня влажности предохранительных клапанов при нормальном режиме работы. 2 н. и 18 з.п. ф-лы, 10 ил.
Наверх