Способ бесконтактного вывешивания сверхпроводников

 

Изобретение относится к области электротехники, а точнее к устройствам с использованием сверхпроводников. Предлагается способ бесконтактного вывешивания в магнитном поле сверхпроводников, имеющих малые значения нижнего критического поля. Изобретение направлено на увеличение удерживающей силы. Сущность изобретения заключается в том, что в левитирующем теле формируется пятно магнитного потока в виде вихрей Абрикосова, при этом ее магнитный момент взаимодействует с полем магнитной системы. 3 ил.

Изобретение относится к области электротехники, а точнее к устройствам с использованием сверхпроводников.

Известен способ бесконтактного удержания сверхпроводников, основанный на их идеальном диамагнетизме (эффект Мейснера) [1], при этом сверхпроводящее тело располагается над магнитом, поле которого, если оно меньше первого критического Bк1, будет выталкиваться из его объема, тем самым создавая силу, удерживающую сверхпроводник в бесконтактном положении. При этом величина поля магнита не должна превышать Вк1 сверхпроводника, и удельная удерживающая сила равна: Для реализации этого метода необходимы сверхпроводники с большим значением нижнего критического поля Bк1. В устройствах используются ниобий и его сплавы с Bк1 порядка 0,1 Тл, работающие при температуре жидкого гелия, что в большинстве случаев экономически не целесообразно.

Однако этот способ не позволяет получить большие значения удерживающей силы, в случае использования сверхпроводников с малыми значениями нижнего критического поля, к которым относятся высокотемпературные сверхпроводники с Вк1 0,02 Тл, применение которых возможно при температурах жидкого азота.

Изобретение направлено на увеличение удерживающей силы.

Это достигается тем, что в левитирующем теле формируют локальную область с магнитным потоком в виде вихрей Абрикосова, при этом ее магнитный момент взаимодействует с полем магнитной системы, создающей эту область.

Изобретение поясняется чертежами. На фиг. 1 показано расположение левитирующего тела 1 в виде пластинки из сверхпроводника, относительно полюсов магнитной системы 2, создающий поле В. На фиг. 2 показан изгиб вихря Абрикосова 3 на угол при смещении левитирующего тела 1 на расстояние z. На фиг. 3 показаны результаты экспериментальной проверки предлагаемого способа - зависимость силы взаимодействия F левитирующего тела с магнитной системой от смещения z при поле В = 0.13 Тл.

Сущность предлагаемого способа заключается в следующем. Сверхпроводящее тело 1 (фиг.1), например, в виде пластинки размещается между полюсами магнитной системы 2, поле которой величиной B>Bк1 создает в объеме тела область, где оно существует в виде вихрей Абрикосова [6]. При смещении пластины вниз под действием силы тяжести на расстояние z, запиннингованные вихри, смещающиеся вместе с кристаллической решеткой, будут изгибаться, оставаясь закрепленными. На фиг.2 показан изгиб вихря Абрикосова 3 при смещении левитирующего тела 1. При этом на единичный вихрь со стороны внешнего магнитного поля будет действовать момент силы [2] M = pmBSin, (2) а приложенная к нему сила будет равна: f = pmBSin/l2pmBz/d2, (3) где pm - магнитный момент вихря, - угол между направлением магнитного момента изогнутого вихря и полем, l - длина вихря, приближенно равная толщине пластины d.

В целом же на пятно магнитного потока будет действовать сила F= N0f, где N0= /0 - число вихрей, - магнитный поток, заключенный в объеме пятна, 0 - квант магнитного потока.

Если вес тела меньше силы пиннинга всех вихрей, то это тело будет бесконтактно подвешено между полюсами магнита.

Сила пиннинга определяется как Fп=F0Vв, (4) где F0 - объемная сила пиннинга, параметр, характеризующий данный сверхпроводник, который определяется кристаллической структурой и величиной магнитного поля (количеством вихрей); Vв - объем области, где существуют вихри.

Если вес тела P = Vтg (( - плотность сверхпроводника, Vт - объем тела, g - ускорение свободного падения), то условием левитации будет Fп P, т.е.

F0VVтg. (5) Принимая, например, что объем Vв занимает половину Vт, получаем
F02g. (6)
Так как F0= jkВ, где jk - критический ток, то (6) можно представить в виде
jkB2g. (7)
Характерные значения p для высокотемпературных сверхпроводников (ВТСП) 5000- 6000 кг/м3, тогда F0 должно превышать значение (1-1,2)105 H/м3. Это значит, что при поле 0,1 Тл критический ток сверхпроводника должен быть порядка 106 А/м2. В настоящее время известны ВТСП, имеющие значения критического тока 108 - 109 А/м2 [3-4], что позволяет выполнить условие левитации.

Для проверки предлагаемого способа на установке, описанной в [5], были проведены эксперименты по бесконтактному вывешиванию пробного тела в виде пластинки с размерами (20х5х1,5)мм3 и массой 0,7810-3 кг из сверхпроводника Y-Ba-Cu-O, имеющего следующие параметры: начало и конец сверхпроводящего перехода соответственно 93 и 82К, плотность 5,2 г/см3. Эксперимент проводился в газообразном азоте при температуре 78 К. Была обнаружена устойчивая левитация тела в поле 0.13 Тл.

Кроме того проведены измерения силы F, возникающей при смещении сверхпроводящего тела в рассматриваемой выше ситуации. Полученная зависимость силы взаимодействия сверхпроводника с магнитной системой F от смещения z при значении поля В= 0,13 Тл представлена на фиг.3. Как видно, с ростом смещения сила F быстро возрастает и при z > 0,7 мм достигает значения 1910-3Н. Такая величина силы позволяет выполнить условие левитации для тела массой 1,910-3 кг. Таким образом, удерживающая сила в данной экспериментальной ситуации превышает вес тела в 2,4 раза.

Оценим величину удерживающей силы для используемого пробного тела, вывешиваемого с помощью известного (основанного на эффекте Мейснера) способа. Из формулы (1) максимально возможная удерживающая сила f, действующая на единицу поверхности сверхпроводника, для Bk1= 0.02 Тл равна 0.9 H/м2. При площади, большей грани пластинки 1 10-4 м2, получаем величину удерживающей силы 0.9 10-4H, что меньше, чем в предлагаемом нами способе.

Источники информации
1. Ковалев В.П. Опоры и подвесы гироскопических устройств. - М.: Машиностроение, 1970. - 286 с.

2. Иродов И. Е. Основные законы электромагнетизма. - М.: Высшая школа, 1983.- 279 с.

3. Свистунов В.М., Таренко В.Ю., Дьяченко А.И. и др. О природе большого критического тока в текстурированных металлооксидах иттрия. //ЖЭТФ. - 1991. - 100, N 6.- С. 1945-1950.

4. Quincey P.G. Working with ceramic superconducting materials: process and problems. // Meas. Sci. and Tehnol. 1990.- N 9. - Р.710-715.

5. Голев И.М., Андреева Н.А., Милошенко В.Б. Установка для исследования динамики магнитного потока в сверхпроводниках механическим методом. //Приборы и техника эксперимента. - 1998. -N 5.- С.161-163.

6. Чечерников В.И. Магнитные измерения, Издательство Московского Университета, 1963, стр. 24.


Формула изобретения

Способ бесконтактного вывешивания сверхпроводников в магнитном поле, отличающийся тем, что в левитирующем теле формируют локальную область с магнитным потоком в виде вихрей Абрикосова, при этом ее магнитный момент взаимодействует с полем магнитной системы.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к области точного приборостроения, в частности к гироскопам на магнитном подвесе, и может быть использовано в качестве двухосного инерциального блока

Изобретение относится к области гироскопической и навигационной техники и может быть использовано при изготовлении гироскопов с электрическим подвесом ротора (ЭСГ)

Изобретение относится к области гироскопической техники

Изобретение относится к области точного приборостроения и может быть использовано при неконтактном подвешивании силами электромагнитного поля ферромагнитных тел со сферической опорной поверхностью

Изобретение относится к области прецизионного приборостроения и может быть использовано для виброизоляции криогенных чувствительных элементов, предназначенных для навигационных систем и систем управления движущимися объектами

Изобретение относится к прецизионному приборостроению и может быть использовано для виброизоляции криогенных чувствительных элементов, предназначенных для навигационных систем и систем управления движущимися объектами

Изобретение относится к области приборостроения и может быть использовано, например, в неконтактных гироскопах, акселерометрах и магнитных подшипниках

Изобретение относится к области приборостроения и может быть использовано в системах ориентации, навигации и управления таких подвижных объектов, как самолет, корабль, автомобиль, микроробот и другие, где требуется информация об угловых скоростях и кажущихся ускорениях

Изобретение относится к гироскопическим устройствам и может быть применено в навигации и ориентации различных объектов, а также в других областях, где необходимо обеспечить управление подвижной массой при энергетических и временных ограничениях

Изобретение относится к измерительной технике и может быть использовано для измерения перемещения измерительного центра инерционной массы чувствительного элемента приборов, в которых используется магнитный или электростатический подвес тела

Изобретение относится к области точного приборостроения

Изобретение относится к области приборостроения и предназначено для использования в электромеханических устройствах на переменном токе для демпфирования поступательных и угловых колебаний тел, статическое или динамическое состояния которых заданы магнитным или электрическим полями соответственно электромагнитов или электродов, питаемых переменным током

Изобретение относится к области прецизионного приборостроения и может быть использовано при производстве и эксплуатации электростатических гироскопов со сферическим ротором и датчиком угла, расположенным на полюсе ротора

Изобретение относится к области прецизионного приборостроения и может быть использовано при производстве и эксплуатации электростатических гироскопов со сферическим ротором
Наверх