Способ термической переработки высокосернистых сланцев

 

Описывается способ термической переработки высокосернистых сланцев, включающий сушку измельченных сланцев, их термическое разложение твердым теплоносителем с образованием коксозольного остатка и парогазовой смеси, сжигание коксозольного остатка с образованием золы, возвращаемой в качестве твердого теплоносителя на стадию термического разложения, очистку парогазовой смеси от механических примесей, выделение из парогазовой смеси фракций смолы, выкипающих выше 175oC, охлаждение оставшейся парогазовой смеси с разделением ее на газ полукоксования, подсмольную волу и выкипающую до 175oC бензиновую фракцию смолы и ректификацию последней. Способ отличается тем, что ректификацию проводят с последовательным выделением трех фракций с пределами кипения 79 - 90, 90 - 116 и 116 - 145oC, каждую из которых подвергают дальнейшей экстративной ректификации в присутствии одного и того же селективного растворителя N-метилпирролидона, с последующим выделением из него ректификацией тиофена, концентрата метилтиофенов и концентрата диметилтиофенов соответственно из каждой фракции и с получением очищенного селективного растворителя, возвращаемого на стадию экстрактивной ректификации. Технический результат - повышение эффективности и рентабельности процесса. 1 ил.

Изобретение относится к области термической переработки высокосернистых горючих сланцев с целью получения соединений ряда тиофенов, имеющих практическое значение для производства фармакологических и ветеринарных препаратов, а также полиорганосилоксанов, обладающих уникальными физическими свойствами.

Известен способ термической переработки высокосернистых горючих сланцев, включающий высокоскоростной пиролиз измельченного сырья с образованием твердого остатка и парогазовой смеси, охлаждение последней с конденсацией паров воды и смолы, разделение полученной смеси на воду и пиробензол, содержащий тиофен и его гомологи в количестве 6,2-11,5 мас.% (см., например, В.Г. Каширский "О составе пиролизуемого бензола многосернистых горючих сланцев". Горючие сланцы, 1993, N 6 с. 12-16).

Недостатком известного способа является то, что в процессе высокоскоростного окислительного пиролиза для нагрева измельченного сырья используют газовый теплоноситель, что ведет к снижению концентрации пиробензола в парогазовой смеси, усложняет его выделение и тем самым значительно уменьшает выход тиофена и его гомологов. Кроме того, дальнейшая технология выделения целевых соединений тиофенового ряда в процессе отсутствует.

Известен способ термической переработки высокосернистых горючих сланцев, включающий сушку и термодеструкцию сырья с образованием твердого остатка и парогазовой смеси, охлаждение последней, получение смолы, ее ректификацию с выделением фракций смолы (см. , например, Справочник сланцепереработчика, справ. Изд. Под ред. М.Г. Рудина и Н.Д. Серебрянникова - Л.: Химия, 1988, с. 19; 100-102; 246).

Недостатком этого способа является то обстоятельство, что термическую переработку осуществляют в шахтных генераторах, отличительной особенностью работы которых является крайне малый выход легких фракций (2-3% от массы всей смолы), которые можно рассматривать как потенциальное сырье для получения соединений ряда тиофена. Образующиеся на стадии термодеструкции пары легких фракций, в том числе и тиофеновые соединения, безвозвратно теряют, сжигая в смеси с генераторным газом в топках котлов и на факеле.

Наиболее близким техническим решением является способ термической переработки высокосернистых горючих сланцев, включающий сушку измельченных сланцев, их нагрев твердым теплоносителем с образованием коксозольного остатка и парогазовой смеси, сжигание коксозольного остатка с образованием золы, возвращаемой на стадию нагрева в качестве твердого теплоносителя, очистку парогазовой смеси от механических примесей, выделение из парогазовой смеси фракций смолы, выкипающих выше 175oC, охлаждение оставшейся парогазовой смеси с разделением ее на газ полукоксования, подсмольную воду и выкипающую до 175oC бензиновую фракцию смолы, ректификацию последней с выделением тиофенового концентрата (см. пат. РФ N 2128680, С 10 В 53/06, 10.04.99).

Недостатком известного способа является то, что в указанном процессе удается получить только тиофеновый концентрат без дальнейшей более глубокой переработки полученного в виде смеси продукта для производства чистого тиофена и его гомологов, тем самым уменьшаются эффективность и рентабельность переработки высокосернистого сырья.

Задачей изобретения является повышение эффективности и рентабельности процесса за счет получения из высокосернистых сланцев ценных целевых химических продуктов, таких как чистый тиофен и его гомологи.

Для обеспечения поставленной задачи способ термической переработки высокосернистых сланцев включает сушку измельченных сланцев, их термическое разложение твердым теплоносителем с образованием коксозольного остатка и парогазовой смеси, сжигание коксозольного остатка с образованием золы, возвращаемой на стадию термического разложения, очистку парогазовой смеси от механических примесей, отделение от парогазовой смеси фракций смолы, выкипающих выше 175oC, охлаждение оставшейся парогазовой смеси с разделением ее на газ полукоксования, подсмольную воду и выкипающую до 175oC бензиновую фракцию смолы, ректификацию последней с выделением трех фракций с пределами кипения 79-90oC, 90-116oC и 116-145oC, экстрактивную ректификацию каждой из фракций в присутствии одного и того же селективного растворителя (в частности, N-метилпирролидона, 2-пирролидона, диэтиленгликоля или сульфолана), ректификацию последнего с выделением чистого тиофена, концентрата 2- и 3- метилгиофенов и концентрата диметилгиофенов (в основном, 2,5- диметил- и 2,3-диметилтиофена) соответственно из каждой фракции и получением очищенного селективного растворителя, возвращаемого на стадию экстрактивной ректификации.

Причем в качестве селективного растворителя наиболее предпочтительно используют для всех трех фракций N-метилпирролидон.

Предложенный способ позволяет получить чистый тиофен и его гомологи, используя технологию переработки высокосернистых сланцев с твердым теплоносителем, которая обеспечивает выделение паров легких фракций смолы, содержащих углеводородный состав, соответствующий только данному методу переработки сырья, и которая обеспечивает также получение других продуктов нефтехимического производства.

Использование одного и того же селективного растворителя для выделения компонентов в каждом цикле экстрактивной ректификации значительно упрощает эксплуатацию, а регенерация растворителя и повторное использование в каждом цикле экстрактивной ректификации обеспечивают его невысокий расход.

На чертеже представлена схема установки для осуществления предложенного способа.

Установка содержит сушилку 1, реактор 2 с пылеосадительной камерой 3, аэрофонтанную топку 4, орошаемый скруббер 5 с охладителем орошающего агента 6 и ректификационную колонну 7. Верхняя часть ректификационной колонны 7 последовательно соединена с конденсатором-охладителем 8 и сепаратором 9, патрубок для вывода бензиновой фракции которого, соединен с ректификационной колонной 10 через куб-кипятильник 11. Ректификационная колонна 10 снабжена дефлегматором 12 с патрубком для последовательного отвода трех фракций 79-90oC, 90- 116oC и 116-145oC, который подключен к экстрактивной ректификационной колонне 13, снабженной кубом-кипятильником 14, дефлегматором 15 и соединенной по линии вывода смеси селективного растворителя с целевым компонентом с ректификационной колонной 16. Последняя снабжена кубом-кипятильником 17, дефлегматором 18 с патрубком для вывода целевого продукта (Т-тиофена, МТ-концентрата метилгиофена, ДМТ - концентрата диметилгиофена). Линия возврата очищенного селективного растворителя в экстрактивную ректификационную колонну 13 присоединена ниже точки ввода флегмы в эту колонну.

Способ осуществляется следующим образом.

Исходный сланец с размером частиц 0-25 мм подают в сушилку 1, в которой его сушат при 100-160oC и направляют в реактор 2. В реакторе 2 сланец подвергают термическому разложению твердым теплоносителем при 470-560oC с образованием коксозольного остатка и парогазовой смеси. Коксозольный остаток направляют в аэрофонтанную топку 4 для его сжигания с образованием золы, подаваемой в качестве твердого теплоносителя в реактор 2. Избыток золы выводят из процесса. Полученные при сжигании дымовые газы применяют в качестве сушильного агента на стадии сушки. Парогазовую смесь из реактора 2 очищают от механических примесей в осадительной камере 3 и подают на выделение фракций смолы, выкипающих выше 175oC. Выделение этих фракций осуществляют сначала путем охлаждения парогазовой смеси орошением до конденсации фракции смолы с температурой кипения выше 350oC в скруббере 5, а затем ректификацией в колонне 7 с конденсацией и выделением фракций, выкипающих выше 175oC. Оставшуюся неконденсируемую парогазовую смесь подают в конденсатор-охладитель 8, откуда полученный конденсат направляют в сепаратор 9, где его разделяют на газ полукоксования, подсмольную воду и бензиновую фракцию, кипящую до 175oC. Полученную бензиновую фракцию подают в ректификационную колонну 10, где из этой фракции выделяют три целевые фракции с пределами кипения 79-90oC, 90-116oC и 116-145oC. Каждую из полученных фракций в отдельности подвергают экстрактивной ректификации в колонне 13, при этом в верхнюю часть колонны ниже точки ввода флегмы подают селективный растворитель (N -метилпирролидон). Полученную смесь растворителя и целевого продукта (тиофен, метилгиофены, диметилгиофены) выводят из нижней части колонны 13 и направляют в ректификационную колонну 16, в которой эта смесь разделяется с получением целевого продукта (тиофен, концентрат метилтиофенов, диметилтиофеновый концентрат) и выделением очищенного селективного растворителя, возвращаемого на орошение колонны экстрактивной ректификации 13.

Пример 1. На установку подают высокосернистый сланец (Кашпирское месторождение): Wч-20%; (CO2)dм-7%; Sdt-3,5%; Tdsk-10%; Qd-5,58 МДж/кг. Измельченный до 15 мм сланец сушат до 130oC и подвергают термическому разложению с твердым теплоносителем, имеющим температуру 835oC. В результате термодеструкции из каждой тонны рабочего сланца получают 152 кг парогазовой смеси. Парогазовую смесь после отделения фракций смолы, выкипающих выше 175oC, охлаждают до 20-30oC и разделяют на газ полукоксования, подсмольную воду и бензиновую фракцию, кипящую при температуре ниже 175oC. В результате получают около 10 кг/т сланца вышеуказанной фракции, которую подвергают ректификации в колонне 10. В результате четкой ректификации при высоких флегмовых числах 30 - 40, атмосферном давлении, температуре теплоносителя в кубе-кипятильнике 230-250oC из фракции алканов верхней части колонны 10 в виде дистиллята последовательно отбирают три фракции, выкипающие в пределах 79-90oC (0,118 кг/т сланца); 90-116oC (0,785 кг/т сланца) и 116-145oC (1,935 кг/т сланца). Кроме того, выделяют фракцию, выкипающую до 78-79oC, соответствующую легкокипящим алканам и моноциклоалканам (1,65 кг/т). Полученную легкокипящую фракцию (до 78-79oC) используют как товарный продукт добавка к моторному топливу. Кубовый остаток утилизируют в виде композиций для дорожных покрытий, пропитки шпал.

Каждую из трех фракций в отдельности подвергают дальнейшей экстрактивной ректификации. При этом в качестве селективного растворителя используют один и тот же органический растворитель N - метилпирролидон. Фракцию, выкипающую в пределах 79-90oC, подают в среднюю часть колонны экстрактивной ректификации 13, в верхнюю часть которой вводят N - метилпирролидон в количестве 0,354 кг/т сланца. Процесс проводят при атмосферном давлении, флегмовом числе 5 - 7, температуре в верхней части колонны 80oC, температуре теплоносителя в кубе-кипятильнике 14 230 - 250oC. Из нижней части колонны 13 выводят N-метилпирролидон с растворенным в нем тиофеном и направляют в колонну 16, ректификационный процесс в которой проводят при атмосферном давлении, флегмовом числе 1-3, температуре в верхней части колонны 84oC. Из верхней части колонны отбирают тиофен (98%-ный) в количестве 0,033 кг/т сланца, который широко используют в органическом синтезе.

Пример 2. Фракцию, выкипающую в пределах 90-116oC, полученную по примеру 1, в количестве 0,785 кг/т подают в среднюю часть колонны экстрактивной ректификации 13. Температура в верхней части колонны составляет 110oC, давление - атмосферное, флегмовое число - 5 - 10. В верхнюю часть колонны вводят N - метилпирролидон в количестве 2,355 кг/т сланца. Из нижней части колонны выводят N - метилпирролидон с растворенными в нем метилгиофенами и подают в среднюю часть колонны 16. Процесс ректификации проводят при атмосферном давлении, флегмовом числе 1 - 3 и температуре в верхней части колонны 113-116oC. Из верхней части колонны отбирают концентрат метилгиофенов в количестве 0,533 кг/т сланца, который является ценным гетероциклическим сырьем для органического синтеза. Регенерированный N-метилпирролидон возвращают в колонну 13.

Пример 3. Фракцию, выкипающую в пределах 116-145oC, полученную по примеру 1, в количестве 1,935 кг/т подвергают экстрактивной ректификации в колонне 13. В верхнюю часть колонны вводят N-метилпирролидон в количестве 5,81 кг/т сланца. Процесс ведут при атмосферном давлении, флегмовом числе 5-7 и температуре в верхней части колонны 136-144oC. Из нижней части колонны выводят N -метилпирролидон с растворенными в нем диметилгиофенами и подают в среднюю часть колонны 16. Процесс ректификации проводят при атмосферном давлении, флегмовом числе 2 - 3 и температуре в верхней части колонны 132-137oC. Из верхней части колонны отбирают концентрат диметилгиофенов в количестве 1,45 кг/т сланца, используемый как источник гетероциклического сырья в органическом синтезе. Регенерированный N-метилпирролидон возвращают в колонну 13.

Формула изобретения

Способ термической переработки высокосернистых сланцев, включающий сушку измельченных сланцев, их термическое разложение твердым теплоносителем с образованием коксозольного остатка и парогазовой смеси, сжигание коксозольного остатка с образованием золы, возвращаемой в качестве твердого теплоносителя на стадию термического разложения, очистку парогазовой смеси от механических примесей, выделение из парогазовой смеси фракций смолы, выкипающих выше 175oC, охлаждение оставшейся парогазовой смеси с разделением ее на газ полукоксования, подсмольную воду и выкипающую до 175oC бензиновую фракцию смолы и ректификацию последней, отличающийся тем, что ректификацию проводят с последовательным выделением трех фракций с пределами кипения 79 - 90, 90 - 116 и 116 - 145oC, каждую из которых подвергают дальнейшей экстрактивной ректификации в присутствии одного и того же селективного растворителя N-метилпирролидона, с последующим выделением из него ректификацией тиофена, концентрата метилтиофенов и концентрата диметилтиофенов соответственно из каждой фракции и с получением очищенного селективного растворителя, возвращаемого на стадию экстрактивной ректификации.

РИСУНКИ

Рисунок 1

PC4A - Регистрация договора об уступке патента СССР или патента Российской Федерации на изобретение

Прежний патентообладатель:Общество с ограниченной ответственностью "ТТУ"

(73) Патентообладатель:Общество с ограниченной ответственностью "ТТУ-Лтд"

Договор № РД0059681 зарегистрирован 28.01.2010

Извещение опубликовано: 10.03.2010        БИ: 07/2010




 

Похожие патенты:

Изобретение относится к теплоэнергетике и может быть использовано на парогазовой электростанции, работающей на низкокалорийном твердом топливе с его предварительной термической переработкой, в частности высокосернистом сланце

Изобретение относится к способу термической переработки высокосернистых горючих сланцев и позволяет расширить сырьевую базу производства ихтиола при одновременном получении тиофенового концентрата

Изобретение относится к способу и установке для термической переработки высокозольных топлив и позволяет поддерживать оптимальные режимные параметры и увеличить КПД установки

Изобретение относится к области термокаталитической переработки сернистых твердых топлив, в частности горючих сланцев Поволжья и может быть применено на сланцеперерабатывающих заводах и комбинатах, основной товарной продукцией которых является сланцевый бензин, чистые энергоносители и строительные материалы

Изобретение относится к способам и установкам для термической переработки высокозольных твердых топлив, например горючих сланцев, и позволяет повысить химический и тепловой КПД процесса, уменьшить выбросы вредных компонентов в окружающую среду

Изобретение относится к области термической переработки горючих сланцев и может быть использовано в топливоперерабатывающей промышленности для производства химического сырья, жидких и газообразных топливных продуктов

Изобретение относится к области получения товарных топливно-энергетических и химических продуктов и полупродуктов переработки природных горючих сланцев с целью получения продуктов органического синтеза, сланцевых смол полукоксования, а также моторных топлив, аналогичных получаемым из нефти, а именно бензинов /1 Рудин М.Г., Серебрянников Н.Д

Изобретение относится к химической промышленности, а именно к способам термической переработки сланца

Изобретение относится к области переработки природных энергоносителей, а именно к использованию как органической, так и минеральной части сланцев при одновременной утилизации нефтяных остатков - гудронов

Изобретение относится к способу термической переработки низкосортных твердых топлив, например сланцев и бурых углей, включающий их измельчение, сушку, пиролиз твердым теплоносителем совместно с углеводородными отходами с получением парогазовой смеси и твердого углеродного остатка, очистку и конденсацию парогазовой смеси с получением ценных жидких и газообразных продуктов, сжигание твердого углеродного остатка с образованием смеси твердого теплоносителя с дымовыми газами и отделение от твердого теплоносителя дымовых газов

Изобретение относится к способу и установке термической переработки высокозольных низкокалорийных твердых топлив, может быть использовано в углеперерабатывающей, нефтехимической и сланцеперерабатывающей промышленностях

Изобретение относится к области термической переработки горючих сланцев и может быть использовано в сланцеперерабатывающей промышленности, энергетике, для производства химического сырья, жидких и газообразных энергоносителей, цемента, бетона, а также в сельском хозяйстве

Изобретение относится к области термической переработки высокозольных топлив и может быть использовано в химической, топливоперерабатывающей промышленностях при производстве искусственного жидкого и газообразного топлива или заменителя нефти

Изобретение относится к области термической переработки твердых топлив, например горючих сланцев, углей и т.п., и может быть использовано в энергетике и других отраслях при переработке твердых топлив и органосодержащих отходов для получения высококалорийных жидкого и газообразного топлив

Изобретение относится к области термической переработки высокозольных топлив, в частности горючего сланца, с одновременным получением жидких, газообразных и твердых продуктов, используемых в качестве топлива и цементного клинкера
Наверх