Способ бесконтактного определения эффективности центров пиннинга в сверхпроводниках


H01L39 - Приборы с использованием сверхпроводимости; способы или устройства для изготовления или обработки таких приборов или их частей (приборы, состоящие из нескольких компонентов на твердом теле, сформированных на общей подложке или внутри нее H01L 27/00; сверхпроводники, отличающиеся способом формования или составом керамики C04B 35/00; сверхпроводники, сверхпроводящие кабели или передающие линии H01B 12/00; сверхпроводящие катушки или обмотки H01F; усилители с использованием сверхпроводимости H03F 19/00)

 

Изобретение относится к области измерительной техники, а точнее к способам измерения параметров сверхпроводящих материалов, в частности силы пиннинга. Предложен метод, позволяющий определять эффективность центров пиннинга сверхпроводника в широких пределах и бесконтактно. Согласно методу сверхпроводник вывешивают между полюсами магнитной системы, в его объеме формируют пятно магнитного потока, измеряют зависимость уравновешивающей силы от смещения сверхпроводника в пространстве и определяют минимальную и предельную силы пиннинга. В результате повышается точность измерений. 2 ил.

Изобретение относится к области измерительной техники, а точнее к способам измерения параметров сверхпроводящих материалов, в частности силы пиннинга.

Известно, что величину силы пиннинга сверхпроводника, обычно, рассчитывают из измеренных значений критического тока Iк, определяемого резистивным методом [1], заключающимся в том, что через сверхпроводник, находящийся в магнитном поле с индукцией B, пропускают возрастающий транспортный ток в направлении, перпендикулярном полю, и в момент появления падения напряжения на нем определяют Iк. Сила пиннинга равна [2] Fр=IкB (1) Недостатком метода является то, что рассчитанное в этом случае значение силы пиннинга является минимальным, т.к. появление падения напряжения определяется началом движения слабо запиннингованных вихрей. Также недостатком является наличие омических контактов, когда из-за отличий в работе выхода контактирующих материалов возникает паразитная термо-э.д.с.

Изобретение направлено на создание метода, позволяющего определять эффективность центров пиннинга сверхпроводника в широких пределах и бесконтактно.

Это достигается тем, что сверхпроводник вывешивают между полюсами магнитной системы, в его объеме формируют пятно магнитного потока, измеряют зависимость уравновешивающей силы от смещения сверхпроводника в пространстве и определяют минимальную и предельную силы пиннинга.

Изобретение поясняется чертежами. На фиг.1 показано расположение сверхпроводника в виде пластинки 1 относительно полюсов магнитной системы 2, создающей в его объеме пятно магнитного потока 3. На фиг.2 показаны результаты экспериментальной проверки предлагаемого способа - зависимость уравновешивающей силы Fд от смещения z пластины при T = 78 K, Bе= 0.025 Тл.

Сущность предлагаемого способа заключается в следующем. Сверхпроводящая пластинка 1 размещается между полюсами магнитной системы 2, поле которой величиной Bе>Bк1 создает в объеме тела пятно магнитного потока, которое существует в виде вихрей Абрикосова. Вся конструкция помещается в охлаждающую среду. При смещении пластины в продольном направлении под действием уравновешивающей силы Fд на каждый из вихрей, перемещающийся вместе со сверхпроводником в магнитном поле, будет действовать противодействующая сила. До тех пор пока сила Fд не превысит силу закрепления вихрей (сила пиннинга Fр), будет происходить упругое (обратимое) смещение вихрей (фиг.2, линейный участок АВ). Дальнейшее смещение в неизменном поле Bе приводит к возрастанию этой силы, и как только Fд > Fр, вихри будут срываться с центров закрепления, оставаясь неподвижными относительно магнитной системы, что характерно для участка BC на зависимости Fд(z). В начальный момент происходит срыв слабо закрепленных вихрей, т.е. Fд = Fд min, и т.к. сила пиннинга вихрей в сверхпроводнике различна, то число открепленных вихрей будет увеличиваться по мере смещения пластины, что в конечном итоге приведет к срыву всех вихрей в пятне магнитного потока. На графике зависимость выходит на насыщение (участок CD) и в точке C-Fд= Fд max.

Таким образом, значение Fд в точке B, характеризующее минимальное значение силы пиннинга сверхпроводника, связано с Fр соотношением Fр min = кFд min (2) а значение Fд в точке C - предельное значение силы пиннинга сверхпроводника: Fр max = кFд max (3) где к - коэффициент пропорциональности, равный 1/Vп, Vп - объем пятна магнитного потока.

Предлагаемый способ существенно расширяет возможности, так как позволяет определять как минимальное, так и максимальное значение силы пиннинга вихрей, что более полно характеризует сверхпроводник, из-за различий в дефектности структуры его объема по сравнению с токовым методом. Отсутствие же омических контактов повышает точность измеряемых величин.

Для проверки предлагаемого способа на установке, описанной в [3], проводились измерения эффективности центров пиннинга в сверхпроводнике Y1Ba2Cu3O7-, имеющем следующие параметры: начало и конец сверхпроводящего перехода соответственно 93 и 82К, плотность 5.2 г/см3. Измерения проводились на пластинке с размерами (20х5х1,5)мм3, в газообразном азоте при температуре 78 K.

Из зависимости Fд(z) (см. фиг.2) по величине измеренной силы Fд, соответствующей точке B, находим минимальную силу пиннинга (формула 2), равную 1450 Н/м3, а значение предельной силы пиннинга, рассчитанное по формуле (3), для этого сверхпроводника составляет 4282 Н/м3.

Для сравнения измерений критического тока резистивным методом в аналогичной экспериментальной ситуации получены по формуле (1) значения силы пиннинга, которые оказались равными 1480 Н/м3, что сравнимо с наименьшим значением Fд, полученным предлагаемым методом, и естественно меньше предельного значения силы пиннинга сверхпроводника в 2.9 раза.

Источники информации 1. Волков П.В., Именитов А.Б. и др. Метрологические проблемы измерения токовых характеристик высокотемпературных сверхпроводников. СФХТ. - 1994, т. 7, N 3, с. 397-411.

2. Кемпбелл А. , Иветс Дж. Критические токи в сверхпроводниках. - М.: Мир, 1975. - 332.

3. Голев И.М., Милошенко В.Е., Андреева Н.А. Установка для исследования динамики пятна магнитного потока в сверхпроводниках механическим методом. Приборы и техника физического эксперимента. - 1998, - N 5, - с. 161-163.

Формула изобретения

Способ бесконтактного определения эффективности центров пиннинга в сверхпроводнике в магнитном поле, отличающийся тем, что сверхпроводник вывешивают между полюсами магнитной системы, в его объеме формируют пятно магнитного потока, измеряют зависимость уравновешивающей силы от смещения сверхпроводника в пространстве и определяют минимальную и предельную силы пиннинга.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к криогенной микроэлектронике и может быть использовано для изготовления электронных приборов и устройств, работающих в сверхвысокочастотном диапазоне частот, с уровнем собственных шумов, приближающимся к квантовому порогу, работа которых основана на явлении высокотемпературной сверхпроводимости и эффекте Джозефсона, с рабочей температурой вблизи температуры кипения жидкого азота и характеристиками, неуступающими характеристикам аналогов, работающих при температуре 4,2 К

Изобретение относится к криогенной микроэлектронике и может быть использовано при изготовлении электронных приборов и устройств, работа которых основана на сверхпроводимости и эффекте Джозефсона, с рабочей температурой вблизи температуры кипения жидкого азота и характеристиками, неуступающими характеристикам аналогов, работающих при температуре 4,2 K

Изобретение относится к области получения сверхпроводящих материалов, в частности к способам получения изделий из высокотемпературных сверхпроводящих материалов (ВТСП), и может быть использовано для создания различного рода датчиков и счетчиков в сверхбыстродействующих ЭВМ, крио электронных приборах, детекторов СВЧ и др

Изобретение относится к области синтеза неорганических соединений, конкретно к способу получения объемной ВТСП-керамики для систем: R Ba Cu О, Bi Sr Ca Cu О, где R редкоземельный элемент или иттрий

Изобретение относится к области криогенной техники и может быть использовано для улучшения характеристик различных устройств в ядерной физике, энергетике и СВЧ-технике путем ослабления внешних магнитных и электромагнитных полей и создания магнитного вакуума с помощью сверхпроводящих материалов

Изобретение относится к области технологии получения тонких ВТСП пленок YBaCuO методом лазерной абляции

Изобретение относится к ядерной физике, а именно к устройствам для регистрации ионизирующих частиц

Изобретение относится к высокотемпературным сверхпроводникам
Изобретение относится к технической сверхпроводимости, в частности к процессам синтеза прекурсоров высокотемпературных проводников, и может быть использовано для создания сверхпроводящей керамики и изделий на ее основе, как массивных изделий, так и композиционных длинномерных проводников с керамической сердцевиной (одножильных и многожильных) в металлической оболочке

Изобретение относится к области высокотемпературной сверхпроводимости и может быть использовано при создании перспективных линий электропередач и энергетических установок
Изобретение относится к области получения сверхпроводников, сверхпроводящих композиций и проводников на их основе
Наверх