Способ получения озона

 

Изобретение относится к технологии получения озона из кислорода воздуха и может быть использовано для проверки и градуировки автоматических газоанализаторов микроконцентраций озона. Согласно изобретению способ получения озона осуществляют путем воздействия на кислород воздуха УФ-излучением, при котором длину волны УФ-излучения выбирают в диапазоне 103-150 нм при значении тока разряда в УФ-лампе 0,1 мА и скорости потока воздуха 1,5 л/мин. Способ позволяет получать газ с концентрацией озона на уровне ПДК и дает возможность использовать способ для градуировки газоанализаторов на озон. 1 табл. , 2 ил.

Изобретение относится к технологии получения озона из кислорода воздуха и может быть использовано для поверки и градуировки газоанализаторов микроконцентраций озона.

Известен способ получения озона из кислорода воздуха путем воздействия на кислород УФ-излучения с длиной волны 253,7 нм. Генератор озона на основе этого способа содержит побудитель расхода, систему фильтров для очистки воздуха от пыли, влаги и химических соединений и фотохимический преобразователь, включающий проточную камеру, в которой установлено несколько ртутных ламп высокого давления типа ДРЛ-126 (см. патент РФ N 2097315, C 01 B 13/10, 1997 г.).

Недостатком известного способа является то, что концентрация получаемого озона зависит от температуры окружающей среды и как следствие не является постоянной во времени. По этой причине известный генератор озона не может быть использован для целей поверки и градуировки автоматических газоанализаторов озона.

Известен способ получения озона для градуировки газоанализаторов, при котором на кислород воздуха воздействуют УФ-излучением с длиной волны 253,7 нм. Устройство для осуществления этого способа содержит побудитель расхода воздуха, фильтры для очистки воздуха от пыли и влаги и фотохимический преобразователь кислорода в озон, включающий проточную камеру с установленной в ней кварцевой ртутной лампой, работающей в режиме стабилизированного тлеющего разряда (см. например, техническое описание и инструкцию по эксплуатации генератора озона ГС7601 ИБЯЛ.413344.001 ТО, изготовитель ПО "Аналит-прибор" г.Смоленск).

Недостатком известного способа является то, что концентрация получаемого озона существенно зависит от температуры фотохимического преобразователя. По этой причине в известном генераторе озона предусмотрена специальная система термостатирования. Это существенно увеличивает размеры и вес генератора и повышает энергопотребление. Кроме того, затруднен переход с одного диапазона концентраций генерируемого озона на другой путем регулирования разрядного тока ртутной лампы и для ускорения переходного периода необходим дополнительный подогрев фотохимического преобразователя.

Известен способ получения озона, наиболее близкий по технической сущности к предлагаемому способу, в котором для уменьшения габаритов установки и повышения ее производительности при низких температурах озон получают путем воздействия на кислород, содержащийся в воздухе, УФ-излучением, причем длину волны УФ-излучения выбирают в диапазоне 150-180 нм, при этом при осуществлении способа используют лампу УФ-излучения, корпус которой выполнен из поликристаллической керамики, которая не пропускает УФ-излучение с длиной волны короче 150 нм (JP 1-226701, кл. C 01 B 13/10, 11.09.89).

Известный способ нельзя использовать для получения озона в случае поверки и градуировки газоанализаторов микроконцентраций озона, так как в нем нельзя обеспечить излучение с более короткой длиной волны и получение постоянной по времени концентрации получаемого озона.

Задача изобретения состояла в разработке такого способа получения озона, в котором исключается влияние колебаний температуры окружающей среды на интенсивность УФ-излучения и концентрацию получаемого озона.

Указанная задача решается тем, что предложен способ получения озона преимущественно для градуировки газоанализатора путем воздействия на кислород, содержащийся в воздухе, УФ-излучением, в котором согласно изобретению длину волны УФ-излучения выбирают в интервале значений 103-150 нм, относящемся к вакуумному ультрафиолету.

Указанная задача решается также тем, что способ осуществляют при значении тока разряда в УФ-лампе 0,1 мА и скорости потока воздуха 1,5 л/мин.

Указанные условия осуществления способа позволяют обеспечить достижение нового технического результата, а именно получение потока газа с концентрацией озона на уровне ПДК, что позволяет использовать предлагаемый способ для целей градуировки газоанализаторов на озон.

На фиг. 1 изображена принципиальная схема устройства для осуществления предлагаемого способа получения озона.

На фиг.2 изображен фотохимический преобразователь кислорода в озон.

Устройство (генератор озона) содержит последовательно устанавливаемые фильтр 1 для очистки воздуха от пыли, фильтр 2 для очистки воздуха от влаги и химических веществ, побудитель 3 расхода воздуха, буферную емкость 4 для сглаживания пульсаций, регулятор 5 расхода, дополнительный фильтр 6 для очистки воздуха от присутствующего в нем озона, фотохимический преобразователь 7 кислорода в озон, соединенный с блоком 8 питания.

Фильтр 1 представляет собой микропористый полимерный материал, улавливающий частицы размером до 1 мкм, фильтр 2 представляет собой трубку, заполненную слоями сорбента двух типов: активированного угля и силикагеля. Дополнительный фильтр 6 для очистки воздуха от присутствующего в нем озона (с целью исключения его слияния на концентрацию озона на выходе генератора) содержит серебряно-марганцевый катализатор. В качестве побудителя 3 расхода используется микронасос.

Фотохимический преобразователь 7 представляет собой стеклянную проточную камеру 9 с установленным внутри нее источником 10 УФ-излучения, в качестве которого используется газоразрядная лампа тлеющего разряда, внутренний объем которой заполнен инертным газом, выбранным из ряда, состоящего из криптона, ксенона, аргона или водорода, или их смесями с гелием, или неоном. Лампа имеет окно 11 для вывода УФ-излучения, выполненное из фторида магния, или фторида лития, или оксида алюминия, или фторида кальция. Электрические выводы лампы 12 герметично впаяны в стеклянную проточную камеру 9. Стеклянная проточная камера 9 имеет штуцера 13 для подвода и вывода воздуха. Источник 10 УФ-излучения зафиксирован внутри стеклянной проточной камеры 9 с помощью металлического фиксатора 14.

В соответствии с предлагаемым способом описанное устройство работает следующим образом.

Воздух, засасываемый из окружающего воздуха побудителем расхода 3, через фильтр 1, где он высвобождается от пыли, и через фильтр 2, где он освобождается от влаги и химических веществ, попадает в буферную емкость 4, служащую для сглаживания толчков давления. Далее воздух через регулятор расхода 5 поступает в дополнительный фильтр 6 для очистки воздуха от озона и из него поступает в фотохимический преобразователь 7 кислорода в озон. В нем под действием коротковолнового излучения в диапазоне длин волн от 103 до 150 нм (в зависимости от состава газа и материала окна 11 источника 10 излучения) происходит преобразование кислорода воздуха в озон. Интенсивность излучения инертных газов и водорода в этом спектральном диапазоне очень стабильна и не зависит от температуры ламп. При этом мощность, потребляемая источником 10 излучения, не превышает 1 Вт и не влияет на распределение излучаемой энергии. Интенсивность УФ-излучения, испускаемого источником 10 излучения, зависит исключительно от величины тока разряда. Это позволяет исключить систему термостатирования из состава генератора и легко изменять интенсивность УФ-излучения и, следовательно, концентрацию получаемого озона путем регулирования тока разряда.

Пример. В качестве источника УФ-излучения использовалась лампа криптонового наполнения с окном из фторида кальция. Эта лампа в коротковолновой УФ-области излучает практически одну линию 123,6 нм. При токе разряда 0,1 мА и расходе воздуха 1,5 л/мин генератор обеспечивает выход озона 10 мкг/м3.

В таблице приведены сочетания газового наполнения ламп, материалы окон и длины волн в области вакуумного ультрафиолета, испускаемые источниками.

Выбор указанного диапазона длин волн УФ-излучения обусловлен тем, что использование длины волны свыше 150 нм требует применения кварцевой ртутной лампы со всеми вытекающими последствиями (необходимость термостатирования, большой вес и габариты, повышение энергопотребления и др.). Уменьшение длины волны 103 нм ограничено отсутствием материалов для изготовления окон лампы, пропускающих такое коротковолновое излучение.

Формула изобретения

Способ получения озона из кислорода воздуха путем воздействия на поток воздуха вакуумным УФ-излучением от разрядной УФ-лампы, отличающийся тем, что диапазон длин волн УФ-излучения выбирают в интервале 103 - 150 нм при значении тока разряда в УФ-лампе 0,1 мА и скорости потока воздуха 1,5 л/мин.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к устройствам для получения озона

Изобретение относится к устройствам для получения озона синтезом из воздуха или кислорода и может быть использовано, в частности, в химической и пищевой промышленности, например, для обеззараживания и очистки сточных и питьевых вод

Озонатор // 2132815
Изобретение относится к устройствам плазмохимии с барьерным разрядом для получения озона из газовой смеси, содержащей кислород, и может быть использовано в биологической, химической, нефтехимической, пищевой и других областях промышленности, в сельском хозяйстве и медицине для бактерицидной обработки, озонирования и дезодорации воздуха в производственных и бытовых помещениях, стерилизации и обеззараживания инструментов, оборудования и продуктов

Озонатор // 2132300
Изобретение относится к области производства озона и может быть использовано на промышленных и сельскохозяйственных предприятиях для обработки воздушных и водных сред

Изобретение относится к устройствам для получения озона воздействием на кислород и его смеси искусственным ультрафиолетовым излучением и может быть использовано для очистки воздуха, газовоздушных смесей, аэрозольных смесей, питьевой воды, промышленных сточных вод и т.д
Изобретение относится к космической технике и экологии и может быть использовано при создании космических систем для восстановления озонового слоя Земли

Изобретение относится к химической очистке воды и может быть использовано для приготовления питьевой воды и воды в плавательных бассейнах

Изобретение относится к технологии получения озона из осушенного кислородообогащенного газа, выделенного из атмосферного воздуха короткоцикловой безнагревной адсорбцией, и может применяться в экологии при водоподготовке и очистке сточных вод методом озонирования

Изобретение относится к криогенной технике и может быть использовано для получения озоногазовых смесей

Изобретение относится к производству озона из атмосферного воздуха

Изобретение относится к технологии получения озона и утилизации парникового газа СO2

Изобретение относится к способу и устройству для обогащения тяжелых изотопов кислорода, в которых используется реакция фотохимического разложения озона под действием лазерного излучения
Изобретение относится к медицине, а именно к стоматологии, и может быть использовано для медикаментозной обработки корневого канала зуба. Для этого последовательно выполняют следующие этапы: - обработку зубного канала раствором гипохлорита натрия концентрацией 0,5-5,25 мас.%, объемом 1-20 мл на один корневой канал, при активации ультразвуком с частотой 20-40 кГц, при этом возможна как одномоментная активация ультразвуком в процессе обработки, так и чередование обработки раствором гипохлорита натрия и активации ультразвуком с периодом 3-5 сек, - обработку озонированным физиологическим раствором концентрацией озона в растворе от 10 мкг до 60 мг на литр, объемом 1-20 мл на 1 корневой канал, при активации ультразвуком с частотой 20-40 кГц, - обработку водным раствором хлоргексидина концентрацией 0,12-2 мас.%, объемом 1-20 мл на один корневой канал при активации ультразвуком с частотой 20-40 кГц, при этом между перечисленными этапами обработки соблюдаются временные промежутки не более 3 минут, а каждый этап обработки длится от 3 до 15 минут. Способ позволяет обеспечить высокое качество лечения за счет предупреждения обострения в постпломбировочном периоде и сокращении сроков регенерации в тканях периодонта при его простоте и экономичности. 2 пр.

Изобретение относится к способу очистки газовых выбросов и может быть использовано на предприятиях металлургической, химической, нефтяной, коксохимической, теплоэнергетической отраслей промышленности. Способ очистки газовых выбросов от полициклических ароматических углеводородов, в том числе бенз(а)пирена включает облучение газовых выбросов ультрафиолетовым излучением электрического разряда в рабочем интервале длин волн со средней плотностью световой энергии 10-3 - 3·10-1 Дж/см2, причем облучение газовых выбросов ультрафиолетовым излучением электрического разряда проводят в присутствии озона и воды в виде жидкости или пара при температуре газовых выбросов 0°С - 250°С, причем озон получают путем облучения потока воздуха, подаваемого в камеру предварительного воздействия, причем облучение газового потока в газоходе установки осуществляется чередованием больших 3·10-1 Дж/см2 и меньших 10-3 Дж/см2 значений средней плотности световой энергии, причем облучение газовых выбросов ультрафиолетовым излучением электрического разряда проводят в спектральном диапазоне длин волн 310-410 нм. Изобретение позволяет повысить степень очистки промышленных выбросов от токсичных ПАУ, в том числе бенз(а)пирена и снизить кислотную коррозию газохода установки. 1 ил.
Наверх