Способ оценки сцепных качеств дороги с твердым покрытием

 

Изобретение относится к технологии оперативного контроля сцепных качеств сооружаемых и эксплуатируемых дорог с твердым покрытием, а также аэродромов и может быть использовано при расследовании ДТП. Способ оценки сцепных качеств дорог с твердым покрытием включает в себя определение коэффициента трения между нагруженным движителем и покрытием в момент перехода движителя из неподвижного состояния в режим буксования. Для этого к его ободу по касательной прикладывают дополнительную нагрузку, которую плавно увеличивают до значения, обеспечивающего начало буксования, после чего по величине соотношения дополнительной и основной нагрузок судят о сцепных качествах покрытия. Изобретение повышает точность и достоверность оценки сцепных качеств дороги с твердым покрытием. 1 з.п. ф-лы, 5 ил.

Изобретение относится к области дорожного строительства и, в частности, к технологии оперативного контроля сцепных качеств сооружаемых и эксплуатируемых дорог с твердым покрытием, а также аэродромов и может быть использовано при расследовании дорожно-транспортных происшествий (ДТП).

В настоящее время сцепные качества дорожных покрытий регламентируются государственным стандартом (ГОСТ) 30413-96, называемым "Метод определения коэффициента сцепления колеса автомобиля с дорожным покрытием" (1). Суть метода сводится к тому, что коэффициент продольного сцепления, определяемый как "отношение максимального касательного усилия, действующего вдоль дороги, на площадь контакта сблокированного колеса с дорожным покрытием к нормальной реакции в площади контакта колеса с покрытием", находят при использовании автомобильной установки типа ПКРС-2, состоящей из автомобиля и прицепного одноколесного прибора, оборудованного датчиками ровности и коэффициента сцепления, системами увлажнения покрытия и управления и регистрации. Другими словами, для определения коэффициента сцепления находят силу трения скольжения сблокированного колеса по покрытию и соотносят ее с нормальной реакцией, что, в конечном итоге, дает значение коэффициента трения скольжения колеса по покрытию. При этом, указанный выше ГОСТ устанавливает ряд параметрических ограничений. В частности, нормальная нагрузка на колесо должна быть в пределах 3,0 0,03 кН, что соответствует удельному давлению около 50 H/см2, скорость движения - 60 км/ч. Названные параметры являются не единственными в ГОСТе, но наиболее влияющими на значение коэффициента сцепления. К ним же следует отнести и требование увлажнения поверхности покрытия с нормой - 1,0-0,2 л/м2.

Основным недостатком описанного способа является то, что он не разделяет между собой сцепные качества дорожного покрытия и автомобиля, давая некую интегральную характеристику системы "автомобиль-дорога" и тем самым значительно снижая достоверность и точность проводимых измерений.

Действительно, сцепные качества дороги определяются, главным образом, за счет ее шероховатости и степени увлажнения, в то время как те же качества автомобиля зависят от ряда факторов, не имеющих никакого отношения к качеству эксплуатируемого покрытия, в частности, состояния поверхности протектора, динамических свойств автомобиля в целом, состояния тормозной системы и, наконец, умения водителя пользоваться последней и вообще управлять автомобилем. При изменении коэффициента сцепления, а иначе, коэффициента трения скольжения, невозможно выделить причинные составляющие, которые можно было бы четко разнести на счета сцепных качеств покрытия с одной стороны и автомобиля - с другой. При ДТП измерение коэффициента трения скольжения по методике ГОСТа полностью теряет смысл, так как из нее не ясно, какая доля "вины" ложится на качество покрытия, а какая на техническое состояние автомобиля и водителя. Теория сопротивления перекатыванию, сформулированная Рейнольдсом и развитая В.П.Горячкиным (2, с. 120), устанавливает, что при взаимодействии круглого цилиндра с плоскостью (фиг. 1) в области местного давления (аб) на участках ааI и ббI будет иметь место относительное скольжение, а участок аIбI находится в относительном покое и характеризует реальное сцепление, которое обеспечивает качение и определяется только состоянием поверхностей цилиндра и плоскости. О том, что при скольжении не реализуются сцепные свойства покрытия и измеряющий их коэффициент сцепления не отражает ни количественно, ни качественно эти свойства, свидетельствуют фундаментальные работы Н.П.Петрова по торможению катящегося колеса (2, с. 116). Согласно им "качение на границе со скольжением является оптимальным режимом торможения". Это означает, что при качении с минимальной долей скольжения лучше реализуются сцепные свойства покрытия за счет более высокого коэффициента трения, увеличивающего силу трения. Согласно вышеупомянутым работам Рейнольдса и В. П. Горячкина это объясняется сохранением площадки относительного покоя или сцепления. При скольжении такой площадки вообще нет, из чего следует вывод, что при скольжении сцепление в прямом смысле этого слова потеряно, а измеряемый коэффициент сцепления не отражает никаких сцепных свойств и является просто коэффициентом трения скольжения, зависящим от массы факторов, которые невозможно привести к общему знаменателю, отражающему сцепные свойства покрытия.

На невозможность использования коэффициента трения скольжения в качестве коэффициента сцепления свидетельствует влияние на первый целого ряда факторов. Зависимости коэффициента трения скольжения от шероховатости поверхности (2, с. 203), скорости движения (2, с. 102), температуры в зоне контакта (2, с. 220) изображены на фиг. 2, 3, 4 соответственно. Анализ приведенных зависимостей показывает, что одной и той же шероховатости покрытия, даже при фиксированной про ГОСТу скорости скольжения в 60 км/ч, но при равных температурах окружающего воздуха, будут соответствовать разные коэффициенты сцепления со значительным разбросом, особенно, если учесть нагрев в зоне контакта колеса с поверхностью покрытия, выполненного из асфальтобетона, способного вызвать изменение физических свойств компонентов и особенно битума, температура размягчения которого со значительным изменением вязкости находится в пределах 50-80 oC, не говоря о том, что реально температура при скольжении автомобиля в зоне контакта колес намного выше. Таким образом, коэффициент трения скольжения не может быть использован при определении сцепных свойств дорожного покрытия, во-первых: в силу своего физического несоответствия характеру определяемого свойства - сцепления, во-вторых, в силу трудностей точного учета влияния множества кинетических и физических факторов, возникающих при скольжении колеса по покрытию.

В качестве прототипа предлагаемому способу использован способ определения коэффициента сцепления колеса с дорожным покрытием, описанный в (3). Сущность последнего состоит в торможении колеса измерительного прибора, в процессе которого одновременно определяют в движении величины реакции в опорной плоскости и нормальной реакции. При этом определение реакции в опорной плоскости осуществляют до перехода ее величины через максимальное значение, которое используют для вычисления коэффициента сцепления.

В сравнении с аналогом (1) прототип (3) обладает несомненным преимуществом, заключающимся в том, что при определении коэффициента трения используют режим качения колеса, а не скольжения. Как указано выше, режим качения сопровождается наличием трех площадок контакта колеса с поверхностью. Это - две площадки скольжения и одна площадка покоя (фиг. 1), присутствие которой свидетельствует о наличии сцепления движителя и поверхности. Однако, то, что в прототипе определение реакции в опорной плоскости осуществляют в режиме качения до перехода ее величины через максимальное значение свидетельствует о том, что найденный коэффициент сцепления не в полной мере отражает сцепные качества покрытия, так как является отражением двух видов взаимодействия движителя и покрытия - скольжения и покоя, то есть нет однозначности физической картины такого взаимодействия, что делает способ недостоверным. Отсутствие точных пропорций между скольжением и качением вносит неточность в процесс оценки сцепных качеств покрытия. В целом, как аналог, так и прототип, обладают одним общим принципиальным недостатком - оценка сцепных качеств покрытия идет в движении, а значит на эту оценку накладывают свое влияние все вышеперечисленные факторы (2, с. 102, с. 203, с. 220): на аналог в большей степени, на прототип - в меньшей.

Целью изобретения является повышение точности и достоверности оценки сцепных качеств дорог с твердым покрытием.

Указанная цель достигается тем, что способ оценки сцепных качеств дорог с твердым покрытием включает в себя определение коэффициента трения между нагруженным движителем и покрытием в момент перехода движителя из неподвижного состояния в режим буксования. Для этого к его ободу по касательной прикладывают дополнительную нагрузку, которую плавно увеличивают до значения, обеспечивающего начало буксования, после чего по соотношению дополнительной и основной нагрузок судят о сцепных качествах покрытия.

Принципиальным отличием изобретения от способа - прототипа является то, что в качестве характеристики сцепных свойств дороги с твердым покрытием используют коэффициент трения покоя, наиболее полно характеризующий влияние состояния поверхности покрытия и контактной части движителя, а также материалов, из которых они приготовлены, на сцепляемость системы "колесо-покрытие". В отличие от аналога и прототипа в изобретении оценка сцепных качеств идет от неподвижного состояния указанной системы к режиму буксования, т. е. в условиях, когда может быть получена максимальная и наиболее достоверная оценка сцепления взаимодействующих объектов, чему способствует наличие у них только площадки покоя, исключающей влияние искажающих факторов - температуры, скорости, динамики и наиболее полно отражающей влияние шероховатости покрытия и материала движителя, что и требуется при оценке роли дорожного покрытия для характеристики его эксплуатационных качеств и меры ответственности этих качеств в расследовании ДТП. Аппаратная реализация способа не вызывает затруднений из-за ее простоты.

На фиг. 1 дано схематическое изображение взаимодействующих цилиндра и плоскости по Рейнольдсу и В.Н.Горячкину. На фиг. 2, 3 и 4 даны графики зависимости коэффициента трения скольжения от факторов шероховатости, скорости и температуры соответственно. На фиг. 5 дано схематическое изображение общего случая взаимодействия движителя и покрытия для демонстрации предлагаемого способа.

Изобретение реализуется следующим образом. Перед началом определения коэффициента трения покоя испытуемое покрытие увлажняют согласно ГОСТ, исходя из расхода воды 1,0 0,1 л/м2.

Через 2-3 с движитель 1 (фиг. 5) устанавливают обрезиненным ободом 2, без рисунка протектора, на покрытие и нагружают его ось 3 основной силой Fо, величина которой принимается из расчета 50-60 H/см2, что соответствует величине давления колеса автомобиля на покрытие. Затем, в произвольной точке "a" на ободе движителя по касательной к нему прикладывают дополнительную нагрузку - Fд, которая образует с вертикалью угол "альфа" (фиг. 5), Fд может быть представлена двумя ее составляющими: вертикальной F'д и горизонтальной F''д, которые расположены от центра "O" движителя на расстояниях: r' и r'' соответственно. Сам движитель имеет радиус качения "r". Далее, нагрузку Fд плавно от нуля увеличивают до момента срыва движителя или, другими словами, начала его буксования. Значение Fд именно в этот момент является окончательным и используемым в дальнейших расчетах. Следует отметить, что под плавностью изменения дополнительной нагрузки подразумевается ее увеличение со скоростью 10-20% от значения Fо в секунду. Для определения коэффициента трения покоя - Gт.п. согласно предлагаемому способу, использовано следующее расчетно-аналитическое выражение: где, кроме уже обозначенных выше параметров: r', r'', r имеется параметр A = Fо/Fд.

Приведенная выше формула для определения получена аналитически следующим образом. После приложения к движителю Fо и Fд в точке контакта последнего возникают реактивные силы: P - вертикальная и T - горизонтальная, или сила трения покоя. Из классической механики известно, что указанные реактивные силы связаны между собой через значение коэффициента трения покоя, т.е. Gт.п. = T/R (2). Как T, так и R могут быть определены из условия равновесия моментов и сил, действующих на движитель. Так T = F'дr' + F''дr''/r (3), а, R = F'д + Fо (4). В свою очередь F'д = Fдcos и F'' = Fдsin . Подставив значения для T и R из формул (3) и (4) в формулу (2), получим: Приняв A = Fо/Fд, приводим выражение для Gт.п. к виду: Отличие (1) от (5) состоит лишь в том, что в (5) перед A имеется еще знак "-", который означает, что нагрузки Fо и Fд имеют в этом случае противоположные значения, а при знаке "+" они совпадают по направлению. При этом параллельность Fо и Fд является частным случаем.

В качестве примера предлагается определение Gт.п. двумя способами, отличие между которыми состоит в выборе точек приложения дополнительной нагрузки - Fд.

1. Fд приложена к ободу в точке "б", противоположной точке контакта. В этом случае она параллельна плоскости измеряемого покрытия и значение параметров в формуле (1) будет следующее: r' = 0, r'' = r, = 90o, и она примет вид: Gт.п. = 1/A = Fд/Fо.

2. Fд приложена к ободу в точке "в", т.е. смещенной на 90o, по отношению точки контакта движителя с покрытием, или проще, перпендикулярно последнему. Значения параметров в формуле (1) будет следующее: r' = r, r'' = 0, = 0, и она примет вид: Gт.п. = 1/1 A = Fд/Fо Fд Приведенные выше примеры дают оптимальные способы реализации изобретения, основанные на получении в итоге простейших расчетных зависимостей для Gт.п., которые к тому же способствуют созданию и простых конструктивных решений для соответствующих по назначению приборов. Целесообразно в обоих способах исключить знак "-" перед параметром "A", т.е. лучше использовать дополнительную нагрузку Fд, сонаправленную с основной - Fо, что сделает способ более надежным и его аппаратное оформление проще.

В ТОО "Футурум" выполнены рабочие чертежи и опытный образец прибора, реализующего предлагаемый способ, испытания которого намечены на апрель-июнь 1998 года на магистралях с твердым покрытием города С.-Петербурга и Ленинградской области.

Источники информации, принятые во внимание при экспертизе: 1. Государственный стандарт (ГОСТ) 30413-96 на "Метод определения коэффициента сцепления колеса автомобиля с дорожным покрытием",
2. Крагельский И.В., Щедров В.С., Развитие науки о трении. Изд. Академии наук СССР, 1958, с. 290.

3. Авторское свидетельство СССР N 1652866, кл. G 01 M 17/02, 1991, Бюл. N 20 - прототип.


Формула изобретения

1. Способ оценки сцепных качеств дороги с твердым покрытием, включающий определение коэффициента трения между нагруженным основной нагрузкой колесным движителем и покрытием, отличающийся тем, что к ободу неподвижного движителя по касательной прикладывают дополнительную нагрузку, которую плавно увеличивают до значения обеспечивающего начало буксования, по соотношению значений основной нагрузки и дополнительной в момент перехода движителя из неподвижного состояния в режим буксования определяют коэффициент трения и судят о сцепных качествах покрытия.

2. Способ по п.1, отличающийся тем, что коэффициент трения определяют по формуле

где - угол между вертикалью проходящей через ось вращения движителя и направлением действия дополнительной нагрузки;
r - радиус качения движителя;
r' - расстояние от вертикали до точки приложения дополнительной нагрузки на ободе;
r'' - расстояние от горизонтали, проходящей через ось вращения движителя до точки приложения дополнительной нагрузки на ободе;
Fо - основная нагрузка приложенная к движителю;
Fд - дополнительная нагрузка приложенная к движителю.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5



 

Похожие патенты:

Изобретение относится к измерению коэффициента сцепления колеса, например автомобильного, с дорожным покрытием

Изобретение относится к области исследования материалов механическими способами, в частности к определению коэффициента трения

Изобретение относится к материаловедению и может быть использовано для определения фрикционных свойств волокна, в частности волокна волос

Изобретение относится к средствам исследования материалов механическим способам, а именно к средствам оценки коэффициента сцепления транспортного средства с поверхностью дорожного покрытия

Изобретение относится к области сельскохозяйственного машиностроения и предназначено для использования при исследовании устройств, транспортирующих сыпучие материалы с помощью вибрации

Изобретение относится к машиностроению, к области теории механизмов и машин и может быть использовано в качестве установки для определения коэффициентов трения покоя и движения для различных твердых материалов

Изобретение относится к области исследования материалов механическими методами, а именно к аппаратуре, оценивающей коэффициент сцепления транспортного средства с поверхностью дорожного покрытия
Изобретение относится к способам исследования, в частности к способам контроля равномерности распределения компонента в смеси, используемым при контроле гомогенизации смеси смешиваемых компонентов, и может быть использовано в химической промышленности

Изобретение относится к области трибометрии, в частности, к конструкциями устройств для прецензионных исследований процессов трения и износа как в присутствии смазочных материалов различного типа, так и в их отсутствии (при изучении процессов "сухого трения" конструкционных материалов)

Изобретение относится к контрольно-измерительной технике, а именно к устройствам для измерения степени уплотнения, и предназначено для оперативного контроля степени уплотнения асфальтобетона в процессе его укатки

Изобретение относится к устройствам для оперативного контроля сцепных качеств сооружаемых и эксплуатируемых дорог с твердым покрытием, а также аэродромов и может быть использовано при расследовании ДТП

Изобретение относится к области дорожного строительства, в частности к техническим средствам оперативного контроля качественных параметров сооружаемого и эксплуатируемого покрытия из асфальтобетона

Изобретение относится к измерению коэффициента сцепления колеса, например автомобильного, с дорожным покрытием

Изобретение относится к строительству и эксплуатации автомобильных дорог и аэродромных покрытий, а именно к устройствам для оценки прочности и ровности дорожных одежд

Изобретение относится к строительству и эксплуатации автомобильных дорог

Изобретение относится к области строительства и эксплуатации автомобильных дорог, в частности к устройствам для испытаний дорожных и аэродромных конструкций с целью оценки их прочности

Изобретение относится к устройству для измерения прогиба шоссе, соединенному с транспортным средством, включающим раму, передние колеса и заднюю несущую ось, представляющую пары задних колес

Изобретение относится к строительству и эксплуатации автомобильных дорог и предназначено для контроля несущей способности и ровности дорожных конструкций

Изобретение относится к измерительной технике, в частности к определению профиля поверхности дорожного покрытия с помощью транспортных средств, движущихся вдоль его профиля, например, при строительстве или эксплуатации дорог
Наверх