Способ фракционирования природных битумов и высоковязких нефтей

 

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано для глубокого разделения тяжелого углеводородного сырья типа природных битумов и высоковязких нефтей на фракции топлив, масел и различных нефтехимических продуктов. Сущность: проводят деасфальтизацию обезвоженного сырья смешением с полярным водорастворимым растворителем при повышенной температуре, но не выше температуры кипения используемого растворителя, отделение раствора деасфальтизата от раствора асфальта, фракционирование деасфальтизата ступенчатым добавлением к последнему воды с отделением образующейся на каждой ступени фракции. Причем ступенчатое добавление к деасфальтизату воды проводят при постоянной повышенной температуре, но не выше температуры кипения используемого растворителя. Технический результат: снижение энергозатрат. 4 табл., 3 ил.

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано для глубокого разделения тяжелого углеводородного сырья типа природных битумов и высоковязких нефтей на фракции топлив, масел и различных нефтехимических продуктов.

Особенности фракционного и химического состава природного битума (ПБ) позволяют рассматривать его как сырье комплексного назначения для получения ряда специфических продуктов, которые невозможно или экономически не выгодно получать из других видов сырья.

Современные технологии переработки нефти не приспособлены для такого вида сырья, как природные битумы. Низкая термическая стабильность ПБ приводит к интенсивному разложению ценных компонентов сырья в процессе ректификации, что в сочетании с пониженным содержанием светлых фракций ухудшает условия работы и резко снижает технико-экономические показатели ректификационных установок. Если из легких нефтей можно отогнать фракции, выкипающие до 500-550oC, то при перегонке ПБ интенсивное термическое разложение наступает при температурах порядка 300oC, и в системе не удается создать достаточный вакуум с целью глубокого извлечения масляных фракций (см. 1. Сюняев 3. И. и др. О переработке высоковязких нефтей из битуминозных пород. // Нефтебитуминозные породы: перспективы использования: Материалы Всесоюзного совещания по комплексной переработке и использованию нефтебитуминозных пород. - Алма-Ата.: Наука, 1982. - 300 с.; 2. Зенинский А.М., Обыденков С.И., Садыков А. Н. Технико- экономическая оценка использования природных битумов с учетом новых цен и требований по экологии //тр. Всесоюзн. Конф. по проблемам комплексного освоения природных битумов и высоковязких нефтей. - Казань, 1992, с. 81-87).

Для увеличения глубины разделения ПБ необходимо использовать методы, позволяющие либо удалять перед ректификацией термически нестойкие компоненты сырья, либо использовать методы, не требующие термического воздействия на сырье.

Высокое содержание в ПБ масляных фракций, их уникальные свойства (высокий индекс вязкости, низкая температура застывания) и невозможность или нецелесообразность их выделения традиционными методами требуют разработки методов, учитывающих особенности перерабатываемого сырья (см. 3, Курбский Г. П., Романов Г.Р., Галимов Р.А. и др. Направления рационального использования природных битумов Татарии // Теплоэнергетика и энерготехнология в проблемах добычи нефти и битумов - сб. тр. КНЦ АН СССР. Казань. - 1991).

Известны способы разделения природных битумов и высоковязких нефтей деасфальтизацией обезвоженного сырья углеводородами, спиртами, кетонами, эфирами, газами с получением деасфальтизата и асфальта (см. 4, Казакова Л.П., Крейн С.Э. Физико-химические основы производства нефтяных масел / М.: Химия, 1978. - 320 с.).

Но эти способы не позволяют разделять природные битумы на несколько фракций и концентрировать в одной фракции низкомолекулярные гетероатомные соединения, которые являются ценным сырьем для нефтехимии.

Известен способ фракционирования высоковязкого сырья, включающий деасфальтизацию путем смешения обезвоженного сырья с полярным водорастворимым растворителем, отделение раствора деасфальтизата от раствора асфальта. Раствор деасфальтизата подвергают фракционированию путем ступенчатого добавления к последнему воды в количестве 1,0-27,0 мас.% от первоначального количества раствора деасфальтизата на каждой ступени с отделением образующейся на каждой ступени фракции. (см. 5, патент РФ N 2055858, C 10 C 3/08, БИ N 7, 1996).

Этот способ имеет ограничения по глубине фракционирования и не позволяет выделить наиболее тяжелые, высоковязкие масляные компоненты ПБ. Кроме того, этот процесс проводится при температуре 20oC, что требует применения дорогостоящих низкотемпературных хладагентов с температурой около 10oC и использования соответствующего дополнительного оборудования.

Недостаток по ограничению глубины фракционирования исключается в способе фракционирования природных битумов и высоковязких нефтей с помощью полярных водорастворимых растворителей, включающий деасфальтизацию путем смешения обезвоженного сырья с полярным водорастворимым растворителем, отделение раствора деасфальтизата от раствора асфальта, фракционированием деасфальтизата ступенчатым добавлением к последнему воды с отделением образующейся на каждой ступени фракции. Смешение сырья с растворителем по этому способу проводят при повышенной температуре, но не выше температуры кипения используемого растворителя. Перед добавлением к раствору деасфальтизата воды проводят предварительное фракционирование деасфальтизата путем ступенчатого снижения температуры раствора до 20-25oC с шагом 15-35oC и отбором образовавшихся на каждой ступени фракций (см. 6, заявка на патент N 97104387, C 10 G 21/02 опубл. 1.10.97).

Выбранный в этом способе температурный режим фракционирования должен включать в себя дорогостоящий предварительный этап ступенчатого охлаждения раствора деасфальтизата, что требует использования хладагентов. Использование таких хладагентов, как оборотная вода или воздух, ведет к усложнению регулирования и поддержания температурного режима процесса. Эти хладагенты используются в процессах, проводимых при температуре не ниже 50oC, а фракционирование по этому способу требует температуры 20oC. По этой причине для осуществления процесса необходимы дорогостоящие хладагенты с температурой около 10oC. (см. 7, Скобло А.И., Трегубова И.А., Молоканов Ю.К. Процессы и аппараты нефтеперерабатывающей и нефтехимической промышленности. / М.: Химия, 1982. - 584 с.).

Задачей изобретения является разработка способа фракционирования природных битумов и высоковязких нефтей, не требующего применения хладагентов, при сохранении глубины разделения сырья и возможности получения наиболее тяжелых высоковязких масляных компонентов, а также снижение энергетических затрат за счет исключения этапа охлаждения раствора деасфальтизата и более высокой температуры поступающего на регенерацию растворителя.

Поставленная задача решается способом фракционирования высоковязкого сырья, включающим деасфальтизацию путем смешения обезвоженного сырья с полярным водорастворимым растворителем при повышенной температуре, но не выше температуры кипения используемого растворителя, отделение раствора деасфальтизата от раствора асфальта, фракционирование деасфальтизата ступенчатым добавлением к последнему воды с отделением образующейся на каждой ступени фракции. Причем ступенчатое добавление к деасфальтизату воды проводят при постоянной повышенной температуре, но не выше температуры кипения используемого растворителя.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1. Берут 100 г сырья (предварительно обезвоженный Ашальчинский ПБ) и проводят деасфальтизацию с помощью ацетона (массовая кратность растворителя к сырью - 5), температура равна 55oC. Перемешивание битума с растворителем осуществляют электромешалкой до наступления равновесия. После отстаивания раствор деасфальтизата, состоящий из растворителя и растворенных в нем углеводородов и смол, отделяют от раствора асфальта и проводят фракционирование деасфальтизата при той же температуре 55oC. К раствору деасфальтизата в делительную воронку добавляют воду из расчета 4 мас.% от количества раствора деасфальтизата. При этом из раствора выделяется в виде отдельной жидкой фазы углеводородная фракция. К оставшемуся раствору деасфальтизата добавляют порцию воды из расчета 8 мас.% от исходного количества раствора деасфальтизата. При этом из раствора выделяется фракция N 2. К оставшемуся раствору деасфальтизата добавляют новую порцию воды в количестве 12 мас.% от исходного количества раствора деасфальтизата и снова отделяют выделившуюся фракцию N 3. К оставшемуся после отделения предыдущих фракций раствору деасфальтизата добавляют воду из расчета 16 мас.% от исходного количества раствора деасфальтизата. При этом из раствора выделяется фракция N 4. В каждом случае от выделившейся фракции отгоняют растворитель. Последнюю фракцию N 5 получают после отгона растворителя из раствора деасфальтизата. Схема проведения процесса приведена на фиг. 1. Выход фракций, их свойства приведены в табл. 1.

Пример 2 аналогичен примеру 1, массовая кратность растворителя к сырью - 3. Схема проведения процесса приведена на фиг.1. Выход фракций, их свойства приведены в табл. 2.

Пример 3 (по прототипу). Берут 300 г сырья (предварительно обезвоженный Ашальчинский ПБ) и проводят деасфальтизацию с помощью ацетона (массовая кратность растворителя к сырью - 5), температура равна 55oC. Перемешивание битума с растворителем осуществляют электромешалкой до наступления равновесия. После отстаивания раствор деасфальтизата, состоящий из растворителя и растворенных в нем углеводородов и смол, отделяют от раствора асфальта. Температуру раствора деасфальтизата снижают на 15oC (до 40oC), при этом из раствора выделяется масляная фракция N 1. После отстаивания выделившуюся фракцию отделяют от раствора деасфальтизата. Температуру оставшегося раствора деасфальтизата снижают на 20oC (до 20oC), при этом из раствора выделяется масляная фракция N 2. После отделения фракции N 2 оставшийся раствор деасфальтизата сливают в делительную воронку. К раствору деасфальтизата в делительную воронку добавляют воду из расчета 10 мас.% от количества раствора деасфальтизата. При этом из раствора выделяется в виде отдельной жидкой фазы углеводородная фракция. К оставшемуся раствору деасфальтизата добавляют аналогичную порцию воды и снова отделяют выделившуюся фракцию. В каждом случае от выделившейся фракции отгоняют растворитель.

Последнюю фракцию получают после отгона растворителя из раствора деасфальтизата. Выход фракций, их состав и свойства приведены в табл. 3 (фиг. 2).

Пример 4 (аналог). Берут 100 г сырья (предварительно обезвоженный Ашальчинский ПБ) и проводят деасфальтизацию с помощью ацетона (массовая кратность растворителя к сырью - 5), температура равна 20oC. Перемешивание битума с растворителем осуществляют электромешалкой до наступления равновесия. После отстаивания раствор деасфальтизата сливают в делительную воронку. К раствору деасфальтизата добавляют воду из расчета 10 мас.% на первоначальное количество раствора деасфальтизата. После отстаивания выделившуюся фракцию отделяют от раствора деасфальтизата. К оставшемуся раствору деасфальтизата добавляют аналогичную порцию воды и отделяют выделившуюся фракцию. Последнюю фракцию получают после отгона растворителя из раствора деасфальтизата. Выход фракций, их свойства приведены в табл. 4 (фиг. 3).

Предложенный температурный режим позволяет упростить технологию разделения сырья при сохранении глубины фракционирования. Кроме того, упрощается аппаратурное оформление процесса, улучшаются его экономические показатели за счет исключения дорогостоящего этапа охлаждения при фракционировании, возможности использования дешевых теплоносителей, а также за счет снижения энергозатрат на регенерацию растворителя.

Для осуществления процесса используются недефицитные и достаточно дешевые реагенты.

Формула изобретения

Способ фракционирования высоковязкого сырья, включающий деасфальтизацию путем смешения обезвоженного сырья с полярным водорастворимым растворителем при повышенной температуре, но не выше температуры кипения используемого растворителя, отделение раствора деасфальтизата от раствора асфальта, фракционирование деасфальтизата ступенчатым добавлением к последнему воды с отделением образующейся на каждой ступени фракции, отличающийся тем, что ступенчатое добавление к деасфальтизату воды проводят при постоянной повышенной температуре, но не выше температуры кипения используемого растворителя.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7



 

Похожие патенты:

Изобретение относится к способам получения дорожных битумов из нефтяных остатков и может быть использовано в нефтеперерабатывающей промышленности и в дорожном строительстве

Изобретение относится к способу получения дорожных битумов из нефтяных остатков и может быть использовано в нефтеперерабатывающей промышленности

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано для разделения углеводородного сырья типа природных битумов на фракции топлив, масел и различных нефтехимических продуктов
Изобретение относится к технологии получения сырья для производства изотропных плотных графитированных конструкционных материалов и изделий на их основе для электроэррозионной обработки, насадок для непрерывной разливки стали и сплавов

Изобретение относится к способам получения анизотропного нефтяного волокнообразующего пека и может быть использовано в нефтеперерабатывающей промышленности

Изобретение относится к коксохимии и металлургии и может быть использовано в производстве конструкционных графитированных материалов и изделий, работающих в условиях высоких температур, нейтронного облучения, эрозии, агрессивных сред и режимного трения. Продукт карбонизации каменноугольного пека обрабатывают ароматическим растворителем. Затем проводят фазовое разделение с получением растворителя, мезофазной пековой фракции и мезофазного углеродного порошка, путем экстракции в устройстве маятникового типа, включающем экстрактор 6, закрепленный на основании 1 с возможностью постоянного маятникового движения. Экстрактор 6 состоит из цилиндрического корпуса с теплоизоляцией и рубашкой обогрева, сливного патрубка для вывода отработанного раствора, расположенного в центральной нижней части корпуса; входного патрубка для ввода исходной суспензии, расположенного в центральной части крышки корпуса. Внутри корпуса расположена емкость с закрепленной цилиндрической кассетой, на перфорированном отверстиями по окружности дне которой укреплен фильтровальный материал. Последующие операции промывки, фильтрации и сушки осуществляют в том же устройстве. Изобретения позволяют увеличить выход мезофазного углеродного порошка. 2 н.п. ф-лы, 3 ил.

Изобретение относится к способам получения анизотропного нефтяного волокнообразующего пека и может быть использовано в нефтеперерабатывающей промышленности. Предложен способ получения анизотропного нефтяного волокнообразующего пека путем термообработки изотропного нефтяного пека в инертной атмосфере при повышенной температуре 350-450°C в течение 5-20 часов, давлении 10-100 мм рт.ст. с последующей экстракционной обработкой полученного гетерофазного пека, отгонкой экстрагента и обработкой полученного анизотропного пека в ультразвуковом поле для удаления следов экстрагента, в качестве экстрагента используют легкий прямогонный бензин с температурой начала кипения 62°C, взятого в количестве весовой кратности легкий прямогонный бензин:гетерофазный пек = 5-10:1, а экстракцию проводят при температуре кипения экстрагента в течение 5-20 ч. Результатом является получение анизотропного пека хорошего качества и снижение себестоимости целевого продукта. 1 табл., 1 пр.

Изобретение относится к экстракции легких фракций нефти и/или топлива из природного битума из нефтеносного сланца и/или нефтеносных песков. В способе природный битум экстрагируют путем водной сепарации из нефтеносного сланца и/или нефтеносных песков при образовании твердого остатка, летучие углеводороды отгоняют из природного битума перегонкой, при этом остается нерастворимый нефтяной кокс, включающий до 10% серы, газообразные углеводороды от перегонки разделяют путем фракционной конденсации на легкие фракции нефти, сырую нефть и различные топлива. Способ отличается тем, что твердые остатки из водной сепарации и/или нефтяной кокс используют термически, при этом их превращают путем субстехиометрического окисления кислородсодержащим газом (26) в противоточном газификаторе (19), взаимодействующим с подвижным слоем сыпучего материала (21), при добавлении щелочных веществ при температурах <1800°C в газообразные продукты расщепления с низким содержанием серы, эти продукты расщепления затем преобразуются путем субстехиометрического окисления в физическое тепло, которое применяют для генерирования нагретой водной технологической среды для физического измельчения нефтеносных песков и/или нефтеносного сланца (А) и/или для отделения природного битума из массива горных пород и/или в качестве технологического тепла для тепловой разбивки природного битума, и путем добавления щелочных веществ при восстановительных условиях, газообразные серосодержащие соединения, появляющиеся в противоточном газификаторе (19), преобразуются при температурах выше 400°C из ингредиентов углерод- и серосодержащих остатков путем химической реакции с щелочными веществами в твердые серосодержащие соединения, и эти твердые серосодержащие соединения, по меньшей мере, частично обрабатывают с газообразными продуктами реакции и удаляют из газовой фазы посредством отделения мелкозернистых материалов при температурах выше 300°C. Технический результат - улучшение энергетического баланса, преодоление угрозы окружающей среде. 12 з.п. ф-лы, 2 ил.

Изобретение относится к способу получения в промышленном масштабе мезофазного пека из высокотемпературной каменноугольной смолы. Способ включает удаление солей и нерастворимой в хинолине фракции из высокотемпературной каменноугольной смолы с целью получения крекинг-остатка, предварительную дистилляцию крекинг-остатка с целью получения остатка с температурой кипения выше 230°C и формирование из него гидрогенизируемого исходного сырья; каталитическую гидроочистку гидрогенизируемого исходного сырья с целью получения гидроочищенного масла и гидрогенизированного растворителя с высокой температурой кипения в интервале 300-360°С; дистилляцию гидроочищенного масла с целью получения гидрогенизированного пека; термическую полимеризацию гидрогенизированного пека с целью получения мезофазного пека. При этом гидрогенизированный растворитель используется в качестве растворителя на стадии удаления солей, в качестве растворителя на стадии удаления нерастворимой в хинолине фракции и/или в качестве части композитного масла при получении гидрогенизируемого исходного сырья. Получаемый продукт имеет высокое содержание мезофазного пека, низкую температуру размягчения и низкое содержание примесей. 34 з.п. ф-лы, 7 ил., 17 табл., 3 пр.

Изобретение относится к нефтеперерабатывающей промышленности и, в частности, к процессам деасфальтизации и деметаллизации тяжелого нефтяного сырья с использованием сольвентных методов. Способ деметаллизации тяжелого нефтяного сырья заключается в смешивании исходного тяжелого нефтяного сырья с органическим растворителем, обеспечивающим полное растворение всех компонентов тяжелого нефтяного сырья и образование однородного гомогенного раствора, при этом соотношение органического растворителя с исходным нефтяным сырьем и температуру смешивания выбирают из условия обеспечения полного смешивания компонентов, предотвращения испарения органического растворителя и отсутствия эффектов расслоения фаз полученной смеси. Затем осуществляют противоточное контактирование полученной смеси с диоксидом углерода в условиях, обеспечивающих нахождение диоксида углерода в сверхкритическом состоянии, а именно при температуре 50-100°C, давлении 100-350 бар и массовом соотношении диоксид углерода : тяжелое нефтяное сырье от 13:1 до 35:1, с последующим отделением легких экстрагированных углеводородных компонентов с пониженным содержанием металлов от тяжелых компонентов исходного нефтяного сырья. Технический результат - увеличение выхода деасфальтизата с низким содержанием металлов, рост селективности процесса деметаллизации при использовании дешевого, доступного и экологически чистого диоксида углерода в качестве основного растворителя, повышение эффективности процесса экстракции легких компонентов и осаждения тяжелых компонентов исходного нефтяного сырья. 8 з.п.ф-лы, 1 ил., 1 табл., 4 пр.

Изобретение относится к способу переработки тяжелых нефтяных остатков, таких как остатки атмосферно-вакуумной перегонки нефти и остаточные высококипящие фракции термо- и термогидродеструктивных процессов, для получения ценных металлов, в том числе редких и редкоземельных металлов, а также выработкой тепла и/или электроэнергии. Способ включает экстракцию тяжелого нефтяного сырья растворителем - сверхкритическим диоксидом углерода с добавлением от 10 до 30% мас. от массы растворителя жидкого органического модификатора, выбираемого из ряда метанол, этанол, ацетон, ацетонитрил, этилацетат, н-гептан, толуол, о-ксилол, при температуре от 40 до 70°C и давлении от 150 до 400 бар, выбираемых таким образом, чтобы плотность диоксида углерода была не ниже 0,8 г/мл, с получением смолисто-асфальтенового остатка, отгонку растворителя, сжигание смолисто-асфальтенового остатка при температуре от 900 до 1300°C с коэффициентом избытка воздуха от 1,1 до 1,3 и выведение золошлаковый остатка как концентрата ценных металлов. Изобретение обеспечивает одновременное извлечение масляных компонентов с минимальным содержанием металлов и концентрата с максимальным содержанием ценных металлов, в том числе редких и редкоземельных. 3 з.п. ф-лы, 1 ил., 2 табл., 4 пр.
Наверх