Способ определения суммарного содержания ароматических углеводородов в нефтяных фракциях и светлых нефтепродуктах

 

Изобретение относится к области нефтехимии. Сущность состоит в том, что проводят измерение показателей преломления смесей в двух взаимно перпендикулярных направлениях, задаваемых налагаемым на образец нефтепродукта внешним магнитным полем. По измеренной разности показателей преломления или пропорциональной ей константе магнитного двулучепреломления смеси определяют содержание ароматических компонентов с учетом коэффициентов, определяемых свойствами ароматической и парафиново-нафтеновой фракций нефтепродукта. Технический результат - повышение точности и быстроты определения. 1 ил., 3 табл.

Изобретение относится к области нефтепереработки и геохимии, в частности к аналитическим методам определения группового углеводородного состава нефтяных фракций и нефтепродуктов.

Известен способ определения ароматических углеводородов в нефтепродуктах и углеводородных растворителях методом анилиновых точек (см. 1. ГОСТ 12329-77 "Нефтепродукты и углеводородные растворители. Метод определения анилиновой точки и ароматических углеводородов", 1985). Использование анилиновых точек при определении содержания углеводородов (УВ) во фракциях основано на существенном различии растворимости в анилине ароматических, нафтеновых и парафиновых углеводородов, выкипающих в пределах одних и тех же температур. Сущность метода заключается в определении минимальной температуры, при которой равные объемы анилина и испытуемого продукта полностью смешиваются при нормальных условиях.

Метод анилиновых точек дает наименьшие погрешности при определении группового состава прямогонных бензинов с содержанием ароматических УВ от 1 до 5%. Точность метода уменьшается при переходе от бензиновых фракций к керосиновым и масляным дистиллятам.

Определение группового углеводородного состава анилиновым методом (см. 2. Современные методы исследования нефтей. Н.Н. Абрютина, В.В. Абушаева, О. А. Арефьев и др. /Под ред. А.И. Богомолова, М.Б. Темянко, Л.И. Хотынцевой. - Л.: Недра, 1984. - 431 с.) предусматривает предварительную разгонку нефти на более узкие фракции, температуры кипения которых соответствуют индивидуальным или близким по составу ароматическим УВ. Обычно отбирают бензольную (60-95oC), толуольную (95-122oC), ксилольную (122-150oC) и фракцию 150-200oC для бензинов, затем стандартные 50-градусные фракции, соответствующие керосину (200-250, 250-300oC) и газойлю (300-350oC).

Определение группового углеводородного состава включает в себя следующие операции: 1) определение максимальной анилиновой точки в исходной фракции (до удаления ароматических УВ); 2) удаление ароматических УВ адсорбцией на силикагеле или экстракцией серной кислотой; 3) определение максимальной анилиновой точки после удаления ароматических УВ (в парафиново-нафтеновой фракции); 4) расчет содержания ароматических, нафтеновых и парафиновых УВ во фракции.

Недостатками аналога являются ограниченность концентрационных пределов определения ароматических углеводородов (1-5%) и в связи с этим невозможность анализа высококипящих фракций нефтепродуктов, значительная длительность подготовительных операций (сушка и перегонка анилина - не менее 12 часов, сушка силикагеля - 8 часов, деароматизация нефтепродукта и др.), необходимость привлечения дополнительного химико-аналитического (формалиновая реакция) или физического (рефрактометрия) методов подтверждения отсутствия ароматических углеводородов в деароматизированной части образца.

Наиболее близким техническим решением является способ определения суммарного содержания ароматических углеводородов в прямогонных бензинах рефрактометрическим методом (см. 3. Б.В. Иоффе, Л.М. Герштейн, О.Е. Баталин. Определение суммарного содержания ароматических углеводородов в прямогонных бензинах дисперсиометрическим методом. Нефтехимия, 1971, т. 11, N 2, 1971, С. 274-277), заключающийся в заполнении ячейки рефрактометра образцом прямогонного бензина, измерении его показателей преломления для двух длин волн (nF и nC) или дисперсиометрического коэффициента DFC DFC = (nF-nC)104/(nC-1,040) (1) и последующем расчете содержания ароматических углеводородов по соотношению P = KD(DFC-194,4) (2) где KD - расчетный коэффициент, зависящий от дисперсии содержащихся в образце ароматических углеводородов, а 194,4 - постоянное значение дисперсиометрического коэффициента парафиново-нафтеновой части.

Известный способ имеет следующие недостатки. Способ определения ароматических углеводородов по показателям преломления для двух длин волн (или дисперсиометрическому коэффициенту) применим к смесям, содержащим ароматические углеводороды в количестве не менее 5 - 10%. Связано это с тем, что дисперсиометрические коэффициенты ароматической и парафиново-нафтеновой фракций, соотношение между которыми определяет рефрактометрический метод, различаются не более, чем в 2 раза. Столь незначительная разница в дисперсиометрическом коэффициенте накладывает существенные ограничения на применение рефрактометрического метода в системах автоматизированного контроля за технологическим процессом на нефтеперерабатывающих предприятиях, так как требует высокой тщательности проведения измерений, в частности, тщательного термостатирования измерительной кюветы.

Задачей предложенного способа является определение суммарного содержания ароматических углеводородов в нефтепродуктах в широких концентрационных пределах (1-100%), повышение точности и быстроты определения. Это достигается путем выбора и измерения такого оптического свойства нефтепродукта, которое значительно различается для ароматической и парафиново-нафтеновой фракций, что позволяет существенно расширить концентрационные пределы определения ароматических углеводородов в нефтепродуктах и снижает жесткость требований на термостатирование ячейки, налагаемых рефрактометрическим способом. Это позволит вести оперативный контроль содержания ароматических углеводородов непосредственно в технологическом процессе.

Поставленная задача решается путем измерения показателей преломления смесей, содержащих ароматические углеводороды с последующим расчетом содержания ароматических углеводородов известным методом. Измерение показателей преломления смесей проводят в двух взаимно перпендикулярных направлениях и n, задаваемых налагаемым на образец нефтепродукта внешним магнитным полем, причем луч, пропускаемый через образец смеси должен быть плоскополяризованным и перпендикулярным к силовым линиям магнитного поля. По измеренной разности показателей преломления или пропорциональной ей константе магнитного двулучепреломления Cсм смеси определяют содержание ароматических компонентов из следующей зависимости ар= (+Cсм)/(+Cсм),
где , и - коэффициенты, определяемые свойствами ароматической и парафиново-нафтеновой фракциями нефтепродукта.

Эта константа Cсм для ароматических углеводородов в 20-30 раз больше по абсолютной величине, чем для парафиновых и нафтеновых углеводородов, что позволяет определять содержание ароматических углеводородов в широких концентрационных пределах.

Заявляемый способ осуществляют с помощью известного устройства для измерения величины магнитного двулучепреломления (см. 4. R.J.W. Le Fevre, P.H. Williams, J. M. Eckert. Austr. J. Chem., 1965, v. 18, p. 1133). Устройство представлено на чертеже и содержит ячейку (кювету) 1, магнит 2, источник плоскополяризованного излучения 3 и анализатор эллиптически поляризованного излучения 4.

Способ осуществляют следующим образом. В ячейку 1 заливают образец светлого нефтепродукта, содержание ароматических углеводородов в котором требуется определить, помещают ее в поле магнита 2, включают источник поляризованного излучения 3. При наложении магнитного поля на первоначально изотропный по оптическим свойствам образец нефтепродукта в последнем возникает анизотропия его оптических свойств, связанная с частичной ориентацией магнитноанизотропных молекул, и образец, при прохождении через него пробного поляризованного луча, начинает проявлять свойства одноосного кристалла с осью симметрии, совпадающей с направлением вектора напряженности магнитного поля H, в образце возникает разница показателей преломления вдоль и поперек силовых линий магнитного поля и первоначально плоскополяризованный луч, пройдя через ячейку (кювету) 1 становится эллиптически поляризованным, по показаниям анализатора эллиптически поляризованного излучения 4 определяют разность показателей преломления исследуемой среды вдоль направления силовых линий магнитного поля и поперек иx n или константу магнитного двулучепреломления C

где C - постоянная магнитного двулучепреломления образца; - длина волны источника поляризованного излучения; H - напряженность магнитного поля. Удельная константа линейного магнитного двулучепреломления образца sC определяется соотношением
sC = 6nC/((n2+2)2d), (4)
где C - константа магнитного двулучепреломления; n - показатель преломления образца в отсутствие поля (при длине волны ); d - плотность образца при температуре измерения.

Удельная константа k-компонентной смеси (раствора) sCсм подчиняется правилу аддитивности по удельным константам sCi, образующих ее компонентов i, с весами, соответствующими их массовой доле i в смеси

Принимая во внимание, что множитель
6n/(n2+2)2
в соотношении (4) при переходе от парафиново-нафтеновой фракции к ароматической меняется в значительно меньших пределах чем константы магнитного двулучепреломления, процедура определения содержания алкилзамещенных бензолов в нефтепродуктах может быть упрощена в соответствии с соотношением,
Cсм/dсм= (Ci/di)i, (6)
где dсмdi - плотности измеряемой смеси и образующих ее индивидуальных компонентов, соответственно. Благодаря тому, что парафиново-нафтеновые и ароматические углеводороды бензиновых фракций имеют различные по порядку величины константы (см. табл. 1-2), выражение (6) может быть преобразовано к соотношению, используемому для двухкомпонентнои смеси

где Cпн/dпн - приведенная константа магнитного двулучепреломления парафиново-нафтеновой фракции нефтепродукта (средневзвешенная); Cар/dарp - приведенная константа ароматической фракции нефтепродукта (средневзвешенная), рассчитанная по соотношению Cii/di (см. табл. 1).

Учитывая (7), а также хорошо выполняющуюся зависимость плотности углеводородной смеси от состава и плотностей образующих ее компонентов (8)
1/dсм= 1/dпн+((1/dар)-(1/dпн))ар, (8)
где dсм - плотность исследуемого нефтепродукта; dпн - плотность парафиново-нафтеновой фракции; dар - плотность ароматической фракции, можно исключить необходимость измерения плотностей исследуемых нефтепродуктов и выразить массовую долю ароматической фракции только через наблюдаемую величину магнитного двулучепреломления нефтепродукта C'см.


где C'см - магнитное двулучепреломление смеси, выраженное относительно бензола; ,, - постоянные безразмерные коэффициенты, определяемые магнитным двулучепреломлением и плотностями ароматической и парафиново-нафтеновой фракциями нефтепродукта. Для простоты в соотношении (9) вместо абсолютной величины магнитного двулучепреломления Cсм использована ее величина относительно бензола C'см = Cсм/Cбенз, которая в меньшей степени чувствительна к длине волны измерения. Пользуясь соотношением (9), отпадает необходимость измерения других физико-химических характеристик нефтепродукта (плотность, показатель преломления), что позволяет легко автоматизировать процесс определения суммарного содержания ароматических углеводородов в нефтепродуктах.

В качестве примера использования способа представлен расчет массового содержания ароматических углеводородов (бензола и его алкилзамещенных производных) в бензиновых фракциях (табл. 3). В табл. 1 приведены литературные данные по константам магнитного двулучепреломления = 578 нм) (см. 5. International critical tables of numerical data /physics, chemistry and technology /1 Ed. E.W. Washburh //N.Y.-L.-1930, v. VII, p. 109-113) индивидуальных алкилбензолов, составляющих основной спектр ароматических компонентов бензиновой фракции, выкипающей до 200oC (см. 2. Б.В. Иоффе, Л.М. Герштейн, О.Е. Баталин. Определение суммарного содержания ароматических углеводородов в прямогонных бензинах дисперсиометрическим методом. Нефтехимия, 1971, т. 11, N 2, с. 274-277), выраженных в относительной шкале по бензолу. Значения констант для соотношения (9) в случае прямогонных бензинов следующие - = 0,05, = 0,9391, = 0,1881 (для случая, когда C'см выражено в относительной шкале по бензолу).

Аналогичные простые соотношения могут быть получены для определения ароматических соединений со смешанными и конденсированными циклами (нафтенобензолы, алкилнафталины, производные антрацена и фенантрена и др.) в высококипящих нефтяных фракциях (керосиновая, газойлевая). Использование заявляемого изобретения позволит расширить концентрационные пределы определения ароматических углеводородов в бензиновых, керосиновых и газойлевых фракциях нефтей, повысить точность их определения и упростить контроль состава нефтепродукта непосредственно в технологическом процессе.

Источники информации
[1] . Нефтепродукты и углеводородные растворители. Метод определения анилиновой точки и ароматических углеводородов. ГОСТ 12329-77. СТ СЭВ 4535-84, М., 1985.

[2]. Современные методы исследования нефтей. Н.Н. Абрютина, В.В. Абушаева, О. А. Арефьев и др. /Под ред. А.И.Богомолова, М.Б.Темянко, Л.И.Хотынцевой. - Л.: Недра, 1984. - 431 с.

[3]. Б.В. Иоффе, Л.М. Герштейн, О.Е. Баталин. Определение суммарного содержания ароматических углеводородов в прямогонных бензинах дисперсиометрическим методом. Нефтехимия, 1971, т. 11, N 2, 1971, с. 274-277.

[4] . R.J.W. Le Fevre, P.H. Williams, J.M. Eckert. Austr. J.Chem., 1965, v. 18, p. 1133.

[5]. International critical tables of numerical data /physics, chemistry and technology /. 1 Ed. E.W. Washburh //N.Y.-L. - 1930, v. VII, p. 109-113.


Формула изобретения

Способ определения ароматических углеводородов в нефтяных фракциях и нефтепродуктах путем измерения показателей преломления смесей, содержащих ароматические углеводороды, с последующим расчетом содержания ароматических углеводородов известным методом, отличающийся тем, что измерение показателей преломления смесей проводят в двух взаимно перпендикулярных направлениях и n, задаваемых налагаемым на образец нефтепродукта внешним магнитным полем, причем луч, пропускаемый через образец смеси, должен быть плоскополяризованным и перпендикулярным к силовым линиям магнитного поля, по измеренной разности показателей преломления или пропорциональной ей константе магнитного двулучепреломления Cсм смеси определяют содержание ароматических компонентов из следующей зависимости
ap= (+Cсм)/(+Cсм),
где , и - коэффициенты, определяемые свойствами ароматической и парафиново-нафтеновой фракций нефтепродукта.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к способам измерения оптических свойств материалов, в частности оптической анизотропии, и может быть использовано для изучения свойств оптически прозрачных сред, например полимерных пленок, кристаллов природных и искусственных материалов и др

Изобретение относится к лазерной спектроскопии и может быть использовано в спектрально аналитическом приборостроении и газоанализе

Изобретение относится к геолого-минералогическим методам исследования горных пород и руд и может быть использовано для восстановления термодинамических условий образования и последующих деформаций рудных и других геологических тел, а также для решения различных структурно-петрологических задач

Изобретение относится к исследованию сегнетоэлектрических материалов с помощью оптического метода и может быть использовано для определения трикритической точки при атмосферном давлении в результате частичного замещения собственных ионов кристаллами ионами примеси, что открывает возможность создавать сегнетоэлектрические вещества с заранее заданными свойствами

Изобретение относится к геолого-минералогическим методам исследования горных пород и может быть использовано для восстановления динамической обстановки образования и деформации геологических тел, решения различных структурно-петрологических задач

Изобретение относится к изменениям в оптике и может быть использовано для определения абсолютных значений двупреломлений кристаллов при исследовании их физических свойств

Изобретение относится к оптическому приборостроению, а точнее к поляризационным приборам, предназначенным для измерения поляризационных характеристик света, прошедшего оптически активные и двулучепреломляющие вещества

Изобретение относится к области оптического приборостроения, в частности к приборам и оптическим системам, в которых кварцевая линза является одним из основных элементов: в оптической литографии, поляризационной технике

Изобретение относится к области измерительной техники и может быть использовано для определения параметра оптической анизотропии кубических кристаллов, относящихся к классу m3m, 4 ¯ 3 m или 432 симметрии. Первый вариант включает измерение распределения локальной степени деполяризации при двух положениях кристалла, в которых наблюдается максимум и минимум деполяризации. Путем интегрирования этих распределений и делений одного на другое определяют величину ξ, а знак параметра ξ определяют по поведению распределения локальной степени деполяризации, представляющей собой «мальтийский крест», при равномерном повороте кристалла из положения, в котором наблюдается минимум, в положение, в котором наблюдают максимум (или наоборот) относительно направления поляризации лазерного излучения. Во втором варианте измеряют зависимость угла наклона «мальтийского креста» φ относительно направления поляризации лазерного излучения от угла поворота кристалла θ вокруг оси, совпадающей с направлением распространения излучения, и по зависимости φ(θ), добившись максимального совпадения снятой зависимости с построенной теоретически, определяют как знак параметра ξ, так и его величину. Изобретение позволяет определить величину параметра оптической анизотропии ξ и его знак. 2 н.п. ф-лы, 3 ил.

Изобретение относится к бреющему устройству, приспособленному для обнаружения и срезания волоса вблизи поверхности кожи части тела человека или части тела животного. Устройство содержит детектор (26), приспособленный для обнаружения волоса вблизи поверхности кожи, и лазер для срезания волоса. Детектор (26) содержит источник (27), приспособленный для испускания оптического излучения, содержащего, по меньшей мере, две длины волны и состояние поляризации падающего света, и блок (28) построения изображения волоса вблизи поверхности кожи, который содержит блок обнаружения (29) оптического излучения, рассеянного и/или отраженного волосом и/или поверхностью кожи, на обеих длинах волн, и блок управления. При этом блок обнаружения (29) предназначен для обнаружения рассеянного и/или отраженного оптического излучения, поступающего от волоса и/или поверхности кожи, содержащего первое состояние поляризации, соответствующее состоянию поляризации падающего света, и второе состояние поляризации, отличающееся от первого состояния поляризации. Таким образом, эффективность обнаружения, а следовательно, и качество бритья повышаются, в то же время энергопотребление снижается и повышается безопасность бритья. 11 з.п. ф-лы, 5 ил.

Изобретение относится к области оптических измерений и предназначено для измерения изменений показателя преломления и двойного лучепреломления, вызванных нелинейными эффектами. Система состоит из фемтосекундного лазера (FS), фотонного оптического волокна (SF), двух оптических каналов (KO1, KO2) и интерферометрической системы, в частности, в виде интерферометра VAWI. Первый оптический канал (KO1) включает в себя монохроматор (MCR) с конденсатором (K), образующим луч измерения. Монохроматор (MCR) на входе соединяется с фотонным оптическим волокном (SF). Система зеркал второго оптического канала (KO2) включает в себя подвижное зеркало (ZP), которое изменяет длину оптического пути второго луча во втором оптическом канале (KO2). Испытуемый материал (M) помещается в область измерения, расположенную на пересечении луча измерения и второго луча, передаваемого через оптический канал (KO2). Изобретение обеспечивает повышение точности измерений параметров оптических материалов в областях, меньших нескольких микрометров. 4 з.п. ф-лы, 1 ил.

Изобретение относится к области оптических измерений. Измерение оптических характеристик заключается в том, что линейно поляризованный свет направляют на образец S через поляризатор. Затем свет достигает блока 131 подвижных зеркал и блока 132 неподвижных зеркал фазовращателя 13 через первую поляризационную пластину 9 и вторую поляризационную пластину 11. Лучи, отразившиеся на этих блоках зеркал, проходят через анализатор 15 и с помощью линзы 17 формирования изображения формируют интерференционное изображение на светоприемной поверхности детектора 19. При этом разность длин оптического пути между пучком, отраженным на блоке 131 подвижных зеркал, и пучком, отраженным на блоке 132 неподвижных зеркал, непрерывно изменяется за счет перемещения блока 131 подвижных зеркал, и непрерывно изменяется интенсивность интерференционного изображения, зарегистрированная детектором 19, что позволяет получить синтезированную форму волны, аналогичную интерферограмме, которая подвергается преобразованию Фурье, что позволяет получить амплитуду относительно длины волны и разность фаз двулучепреломления относительно длины волны. 6 н. и 9 з.п. ф-лы, 22 ил.

Изобретение относится к устройству для обработки волос, которое содержит детектор (10) на основе света для обнаружения волос (11) вблизи поверхности (12) кожи. Детектор (10) содержит источник (13) света для испускания оптического излучения по меньшей мере с первой длиной волны и с поляризацией падающей волны в направлении поверхности кожи. Световой датчик (14a, 14b) предназначен для обнаружения света, отражаемого от поверхности кожи. Световой датчик (14a, 14b) способен отдельно обнаруживать отраженный свет с поляризацией падающей волны и с отличающейся поляризацией и обеспечивать значение PP, представляющее обнаруживаемый свет с поляризацией падающей волны, и значение CP, представляющее обнаруживаемый свет с отличающейся поляризацией. Процессор (15) масштабирует значение CP и значение PP в соответствующие динамические диапазоны для определения значения проекции с минимальной интенсивностью (MIP) посредством выбора наименьшего значения из масштабированного значения CP и масштабированного значения PP и обнаруживает различия между поверхностью (12) кожи и волосом (11) на основе проекции с минимальной интенсивностью. Изобретение позволяет повысить чувствительность и специфичность обнаружения. 2 н. и 11 з.п. ф-лы, 7 ил.

Способ определения параметра оптической анизотропии кубического монокристалла, относящегося к классу симметрии m3m, или 432, в котором производят измерение распределения локальной степени деполяризации лазерного излучения, прошедшего через цилиндрический образец кубического монокристалла с произвольной известной ориентацией кристаллографических осей. При реализации способа приводят образец в положение, при котором распределение локальной степени деполяризации в образце представляет собой «мальтийский крест», измеряют угол наклона «мальтийского креста» относительно плоскости поляризации лазерного излучения. Величину параметра оптической анизотропии кубического монокристалла определяют из величины этого угла и известной ориентации кристаллографических осей образца. Технический результат заключается в разработке способа определения величины параметры оптической анизотропии в цилиндрическом образце кубического монокристалла с произвольной известной ориентацией кристаллографических осей. 4 ил.

Группа изобретений относится к способу и устройству для определения состояния связывания. Связанная конструкция содержит первый и второй слоистый адгезив, связывающий вместе первый и второй слоистые элементы и оптоволокно, зажатое между первым и вторым слоистыми элементами. В момент, когда к оптоволокну прикладывают давление только в заданном направлении, форма поперечного сечения оптоволокна изменяется на эллиптическую форму, так что имеет место двойное лучепреломление, при этом форма оптического спектра изменяется с образованием множества пиков (например, двух). Оптоволокно используют в качестве датчика для детектирования состояния связывания между первым и вторым слоистыми элементами на основе этого двойного лучепреломления. Технический результат – определение состояния связывания слоистых элементом между собой. 2 н. и 5 з.п. ф-лы, 13 ил.
Наверх