Сорбент для газовой хроматографии и способ его получения

 

Сорбент для газовой хроматографии содержит крупнопористый кирпич, например инзенский марки ИНЗ-600, зернением 0,3-0,5 мм, покрытый мелкодисперсным адсорбентом цеолитом типа CaX при следующем соотношении ингредиентов, мас. %: крупнопористый носитель 65-70, цеолит CaX 35-30. Способ получения сорбента для газовой хроматографии включает смешивание в воде мелкодисперсного адсорбента и твердого крупнопористого носителя с последующим высушиванием и термообработкой в токе инертного газа путем ступенчатого подъема температуры от 100 до 350°С со скоростью 50°С/ч. Изобретение позволяет повысить эксплуатационные характеристики сорбента. 2 с.п.ф-лы, 1 табл.

Изобретение относится к газовой хроматографии, а именно к составу сорбента и способу его получения. Сорбент может использоваться для разделения углеводородных газов C1-C6 с воздухом, природных газов, генераторного, коксового и других газов в научно-исследовательских учреждениях, на предприятиях газовой, нефтяной и химической промышленности.

Известны поверхностно-слойные сорбенты на основе молекулярных сит с пористым твердым носителем для газохроматографического анализа и способы их получения, которые по сравнению с традиционными объемными сорбентами в виде молекулярных сит существенно увеличивают эффективность хроматографической колонки, повышают экспрессивность разделения газовых смесей. Основные способы получения поверхностно-слойных сорбентов с молекулярными ситами основаны на механическом встряхивании мелкодисперсных сит с твердыми крупнопористыми носителями с небольшой удельной поверхностью. Для повышения эффективности нанесения адсорбента на поверхность носителя применяют растворители и связующие добавки [Заводская лаборатория, том 59, N 5, 1993 г., с. 4-11].

Недостатками указанных сорбентов и способов их получения является небольшой ассортимент твердых носителей для нанесения молекулярных сит, многие из них имеют ограниченную коммерческую доступность, поэтому на практике поверхностно-слойный сорбент на основе молекулярных сит приготавливают в основном с использованием пористых твердых носителей. Приготавливаемые известными способами сорбенты обладают недостаточной механической прочностью и ограниченной адсорбционной емкостью из-за ограниченности количества молекулярных сит, наносимых на поверхность носителя.

Наиболее близким по составу, способу получения и достигаемому результату является сорбент для газовой хроматографии и способ его получения [А.с. СССР N 1107045, G 01 N 31/08, 1984, бюл. N 29 - прототип]. Сорбент включает мелкодисперсный адсорбент 3-27%, глинистый минерал в Na-форме 0,6-8%, остальное - твердый диатомитовый носитель. Получают сорбент путем диспергирования в воде мелкодисперсного адсорбента и глинистого минерала с последующим нанесением суспензии на твердый носитель и высушивания.

Недостатками сорбентов, полученных таким способом, является их недостаточная механическая прочность и ограниченная адсорбционная емкость, так как дополнительно введенный в состав сорбента глинистый минерал хотя и улучшает адгезию мелкодисперсного адсорбента к поверхности носителя, однако блокирует часть активной поверхности.

В основу изобретения поставлена задача усовершенствования сорбента для газовой хроматографии и способа его получения за счет повышения механической прочности и адсорбционной емкости сорбента путем подбора нужной фракции твердого крупнопористого носителя и режима спекания мелкодисперсного адсорбента с крупнопористым носителем.

Поставленная задача решается за счет того, что сорбент для газовой хроматографии, включающий твердый крупнопористый носитель и мелкодисперсный адсорбент, согласно предлагаемому изобретению в качестве носителя содержит кирпич зернением 0,3-0,5 мм, покрытый мелкодисперсным цеолитом типа CaX при следующем соотношении ингредиентов, мас.%: крупнопористый носитель 65-70, CaX - 35-30, а способ получения сорбента путем смешивания в воде мелкодисперсного адсорбента и твердого крупнопористого носителя с последующим высушиванием согласно изобретению заключается в том, что после высушивания сорбент подвергают термообработке в токе инертного газа путем ступенчатого подъема температуры от 100 до 350oC со скоростью 50oC/час.

Использование твердого крупнопористого носителя, например инзенского кирпича марки ИНЗ-600, зернением 0,3-0,5 мм обеспечивает увеличение слоя молекулярных сит до 30 - 50%. При этом для закрепления слоя минеральных добавок не применяют, поэтому часть активной поверхности молекулярных сит не блокируется.

Специальная термообработка (спекание) позволяет закрепить слой молекулярных сит на поверхности твердого крупнопористого носителя.

Проведение термообработки в токе инертного газа исключает протекание окислительных реакций, продукты которых могут блокировать часть активной поверхности молекулярных сит.

Проведение термообработки плавно со скоростью подъема температуры не более 50oC/час способствует образованию структуры слоя молекулярных сит с развитой поверхностью и обеспечению наилучшего спекания компонентов.

Способ получения сорбента осуществляют следующим образом.

Смешивают необходимое количество CaX дисперсностью 0,16 мм с водой до образования 10 - 20% суспензии. Берут серийно выпускаемый кирпич, например инзенский диатомитовый огнеупорный кирпич марки ИНЗ-600, который имеет следующие характеристики: однороднопористость, адсорбционную и каталитическую инертность по отношению к разделяемым веществам, но в то же время обладает способностью удерживать достаточное количество растворителя, прокаленный при 1000oC [ Д. А. Вяхирев. Руководство по газовой хроматографии, М., Высшая школа, 1987 г., с. 200].

Так называемые носители I типа (огнеупорный кирпич, шамот) - твердые носители розового цвета, приготовленные из природного диатомита прокаливанием его при температуре 900oC. Термостойкость до 1000oC pH 5%-ной водной суспензии примерно 6-7. Большинство пор имеет размер от 0,4 до 2 мк, средний размер примерно 1 мк. Механическая прочность гранул высокая [ А.А. Лурье. Сорбенты и хроматографические носители, М., Химия, 1972, с. 244]. Твердый крупнопористый носитель зернением 0,8-1,0 мм перетирают до зернения 0,3-0,5 мм. Рецептурное количество ИНЗ-600 добавляют к приготовленной суспензии при перемешивании. Затем на песчаной бане при температуре 100-130oC удаляют воду. Сухой сорбент помещают в трубчатую кварцевую печь и в токе азота или гелия ведут термообработку по предложенному режиму.

В таблице приведены состав, режим термообработки и свойства предлагаемого и известного сорбентов и примеры с запредельными значениями показателей.

Как видно из таблицы, предлагаемый сорбент для хроматорграфии и способ его получения (примеры 1-3) по сравнению с прототипом (пример 4) обеспечивают повышение механической прочности с 4,3 до 0,15-0,5% и адсорбционной емкости по критерию разделения пропан-бутан с 7,2 до 7,8-8,9. Запредельные примеры показывают, что при уменьшении зернения носителя до 0,1-0,2 мм (пример 5) снижаются механическая прочность и адсорбционная емкость сорбента. При увеличении зернения носителя до 0,8-1,0 мм (пример 6) снижается адсорбционная емкость сорбента. При уменьшении количества молекулярных сит до 20% (пример 7) снижается адсорбционная емкость сорбента. При увеличении количества молекулярных сит до 40% (пример 8) снижается механическая прочность сорбента. При уменьшении (пример 9) или увеличении температуры термообработки (пример 10) за установленные пределы снижается механическая прочность и адсорбционная емкость сорбента. При увеличении скорости подъема температуры до 100oC/час (пример 11) снижается механическая прочность и адсорбционная емкость сорбента. При снижении скорости нагрева до 30oC/час (пример 12) свойства сорбента не ухудшаются, однако процесс термообработки существенно удлиняется. При проведении термообработки в токе воздуха (пример 13) снижаются механическая прочность и адсорбционная емкость сорбента.

Таким образом, предложенные сорбент для газовой хроматографии и способ его получения позволяют повысить механическую прочность и адсорбционную емкость сорбента.

Формула изобретения

1. Сорбент для газовой хроматографии, включающий твердый крупнопористый носитель и нанесенный на него мелкодисперсный адсорбент, отличающийся тем, что в качестве твердого крупнопористого носителя он содержит кирпич зернением 0,3 - 0,5 мм, а в качестве мелкодисперсного адсорбента - цеолит типа СаХ, при следующем соотношении ингредиентов, мас.%: Крупнопористый носитель - 65 - 70 СаХ - 35 - 30 2. Способ получения сорбента для газовой хроматографии, охарактеризованного в п.1, путем смешивания в воде мелкодисперсного адсорбента и твердого крупнопористого носителя с последующим высушиванием, заключающийся в том, что после высушивания сорбент подвергают термообработке в токе инертного газа путем ступенчатого подъема температуры от 100 до 350°С со скоростью 50°С/ч.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к области приготовления колонок для газожидкостной хроматографии, в частности к способам приготовления сорбентов путем нанесения неподвижной жидкой фазы на твердый носитель, и может использоваться для анализа в санитарно-гигиенических лабораторных исследованиях

Изобретение относится к получению полимерных гранул, используемых в качестве сорбентов для жидкостной хроматографии среднего и высокого давлений, а также для газовой хроматографии

Изобретение относится к аналитической химии и может быть использовано при анализе газа, например воздуха производственных помещений, на содержание фторидов серы

Изобретение относится к области аналитической химии, а именно исследованию и анализу материалов путем выделения их из сложных матриц

Изобретение относится к области анализа небиологических материалов физическими и химическими методами и может быть использовано при оценке глубины распространения опасных концентраций -хлорвинилдихлорарсина на объектах уничтожения химического оружия, а также при решении задач по проведению экологического мониторинга

Изобретение относится к хроматографии и используется для анализа биологических объектов

Изобретение относится к сорбентам, применяемым в газовой хроматографии, и может быть использовано при анализе алканов, хлорорганических и ароматических углеводородов

Изобретение относится к области получения сорбентов, в частности сорбентов для отделения и определения гликопротеинов

Изобретение относится к химии и нефтепереработке

Изобретение относится к аналитической химии органических соединений (детектирование и анализ) и может быть использовано при анализе газовых выбросов предприятий, в частности, для определения концентрации анилина

Изобретение относится к области неорганической химии, в частности к получению органоминеральных сорбентов

Изобретение относится к области химии, а именно к носителям гетерогенных катализаторов

Изобретение относится к инженерной защите окружающей среды и касается переработки промышленных отходов (преимущественно производства ацетилена), содержащих карбид кальция, в сорбент для связывания экологически вредных веществ

Изобретение относится к области прикладной экологии, а также химической технологии, в частности к способам получения сорбентов тяжелых металлов, в т

Изобретение относится к способам получения адсорбентов для очистки и обезвреживания сточных и природных вод, загрязненных органическими веществами, и может быть использовано в природоохранной технологии различных отраслей техники

Изобретение относится к газовой промышленности, может быть использовано для глубокой осушки природного газа

Изобретение относится к лекарственному средству - энтеросорбенту на основе микрокристаллической целлюлозы, который может быть использован для лечения острых и хронических инфекций, экзогенных и эндогенных интоксикаций, нарушений жирового и других видов обмена, и к технологии получения микрокристаллической целлюлозы

Изобретение относится к кислородопоглощающим материалам для упаковки продуктов
Наверх