Способ получения адсорбента

 

Изобретение относится к синтезу адсорбентов на основе оксидных материалов и может быть использовано для повышения эффективности процессов адсорбции органических и неорганических веществ из водных растворов, очистки промышленных сточных вод, содержащих нефтепродукты, фенолы, тяжелые металлы, тонкой доочистки питьевой воды, извлечения ценных компонентов из растворов. Ультрадисперсный порошок алюминия с удельной поверхностью 5-10 м2/г, полученный электрическим взрывом алюминиевой проволоки в аргоне, обрабатывают водой при температуре 50-60°С, прокаливают при температуре 200-300°С в течение 1-3 ч, кипятят в насыщенном растворе бикарбоната натрия в течение 0,5-1: 5 ч и повторно прокаливают при 200-300°С в течение 1,5-3 ч. Способ позволяет получить сорбент с высокой емкостью по фенолам и тяжелым металлам. 2 табл.

Изобретение относится к области синтеза адсорбентов на основе оксидных материалов и может быть использовано для повышения эффективности процессов адсорбции органических и неорганических веществ из водных растворов, очистки промышленных сточных вод, содержащих нефтепродукты, фенолы, тяжелые металлы, тонкой доочистки питьевой воды, извлечения ценных компонентов из растворов.

Известен способ получения гидроксида и оксида алюминия электроэрозионным диспергированием алюминиевой проволоки в воде. Последующим прокаливанием гидроксида при температуре 400oC в течение 6-8 ч получают адсорбент с удельной поверхностью 400 м2/г (Фоминский Л.П., Горожанкин Э.В., Данциг Г.А.). Некоторые свойства порошков, получаемых электроэрозионным методом. В сб.: Плазмохимия-79. Третий Всесоюзный Симпозиум по плазмохимии. Тезисы докладов. - М.: Наука, 1979. - С. 57-59.).

Наиболее близким к заявляемому техническим решением является способ получения адсорбента в соответствии с Патентом России N 2075345, МПК B 01 J 20/06 (опубл. БИ N 8, 1997 г.). По этому способу ультрадисперсный порошок алюминия с удельной поверхностью 5 - 20 м2/г, полученный путем электрического взрыва алюминиевой проволоки в среде аргона, подвергают обработке водой при 50-60oC последующим прокаливанием при 300-500oC в течение 1-3 ч.

Недостатком данного способа является сравнительно невысокая емкость адсорбента по отношению к фонолам и тяжелым металлам, особенно двухвалентному железу.

Задачей предлагаемого изобретения является разработка способа получения адсорбента на основе высокодисперсной окиси алюминия из ультрадисперсного порошка алюминия, имеющего более высокую адсорбционную способность по отношению к фонолам и тяжелым металлам.

Технический результат достигается тем, что полученный путем обработки ультрадисперсного порошка алюминия горячей водой с последующим прокаливанием при температуре 300-500oC в течение 1-3 ч адсорбент дополнительно кипятят в насыщенном растворе бикарбоната натрия NaHCO3O в течение 0,5-1,5 ч, затем промывают водой и вновь прокаливают при температуре 200-300oC в течение 1,5-3 ч.

Отличительными особенностями заявляемого технического решения являются обработка адсорбента кипячением в насыщенном растворе бикарбоната натрия и повторное прокаливание адсорбента при 200-300oC в течение 1,5-3 ч.

Пример 1. 10 г адсорбента, полученного из ультрадисперсного порошка алюминия путем обработки его водой при 60oC с последующим прокаливанием при 300oC в течение 2,5 ч кипятят в насыщенном растворе бикарбоната натрия в течение 1 ч, затем раствор отфильтровывают, адсорбент промывают водой и прокаливают в печи при температуре 250oC в течение 2 ч. Полученный таким способом адсорбент по емкости значительно превосходит адсорбент по прототипу. Характеристики полученного адсорбента в сравнении с прототипом приведены в табл. 1.

Приведенные данные показывают, что адсорбент, полученный заявляемым способом обладает примерно одинаковой с прототипом емкостью по водорастворимым нефтепродуктам, но в 1,25 - 5 раз превосходит адсорбент по прототипу по величине адсорбции фенолов, тяжелых металлов, галогенов.

Влияние температуры и длительности повторного прокаливания обработанного содой адсорбента на его адсорбционную емкость на примере адсорбции двухвалентного железа приведены в табл. 2.

Из данных табл. 2 видно, что наибольшая емкость адсорбента соответствует условиям повторного прокаливания 200-300oC и времени прокаливания 1,5-3 ч.

Приведенные результаты показывают, что заявляемый способ получения адсорбента значительно улучшает его адсорбционную способность по отношению к фенолам, тяжелым металлам и галогенам, без снижения емкости по водорастворимым нефтепродуктам.

Формула изобретения

Способ получения адсорбента на основе оксида алюминия, включающий обработку ультрадисперсного порошка алюминия с удельной поверхностью 5 - 20 м2/г, полученного методом электрического взрыва алюминиевой проволоки в аргоне, водой при 50 - 60oC с последующим прокаливанием при 300 - 500oC в течение 1 - 3 ч, отличающийся тем, что полученный адсорбент обрабатывают кипячением в насыщенном растворе бикарбоната натрия в течение 0,5 - 1,5 ч и повторно прокаливают при 200 - 300oC в течение 1,5 - 3 ч.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к области химической технологии, в частности к получению биоцидного сорбента для очистки питьевой воды, и может быть использовано для обеззараживания воды в различных областях народного хозяйства

Изобретение относится к области неорганической химии, в частности к получению органоминеральных сорбентов

Изобретение относится к газовой хроматографии, а именно к составу сорбента и способу его получения

Изобретение относится к химии и нефтепереработке

Изобретение относится к аналитической химии органических соединений (детектирование и анализ) и может быть использовано при анализе газовых выбросов предприятий, в частности, для определения концентрации анилина

Изобретение относится к области неорганической химии, в частности к получению органоминеральных сорбентов

Изобретение относится к области химии, а именно к носителям гетерогенных катализаторов

Изобретение относится к инженерной защите окружающей среды и касается переработки промышленных отходов (преимущественно производства ацетилена), содержащих карбид кальция, в сорбент для связывания экологически вредных веществ

Изобретение относится к области прикладной экологии, а также химической технологии, в частности к способам получения сорбентов тяжелых металлов, в т

Изобретение относится к области пористых материалов, адсорбентов, в том числе медицинского назначения, носителей для ферментов

Изобретение относится к способам получения адсорбентов для очистки и обезвреживания сточных и природных вод, загрязненных органическими веществами, и может быть использовано в природоохранной технологии различных отраслей техники

Изобретение относится к области очистки газа от примесей, например карбидного ацетилена от фосфина и сероводорода, и может быть использовано для очистки промышленных газов от аналогичных примесей

Изобретение относится к химической технологии, в частности к технологии получения углеродминеральных сорбентов для различного назначения, в том числе для медицины в качестве гемосорбента, энтеросорбента, аппликационного материала, а также для использования их в качестве носителей для катализаторов, ферментов, клеток, биологически активных веществ

Изобретение относится к области разработки пористых материалов - адсорбентов, в том числе медицинского назначения, косметологии, для решения экологических задач, носителей для ферментов, лекарственных препаратов, биологически активных веществ

Изобретение относится к способам получения углеродно-минеральных адсорбентов, используемых, в частности, для обесцвечивания сахаросодержащих растворов

Изобретение относится к области пористых материалов, адсорбентов и может быть использовано в медицине, косметологии, ветеринарии
Наверх