3-(циклогекс-3-енил)пиридинийбензилхлорид в качестве ингибитора коррозии стали в минерализованных средах

 

Изобретение относится к новому химическому соединению 3-(циклогекс-3-енил)пиридинийбензилхлориду, который может быть использован в качестве ингибитора коррозии стали в минерализованных средах в нефтяной промышленности или в системах оборотного водоснабжения. 1 табл.

Изобретение относится к новый химическим соединениям, конкретно 3-(циклогекс-3-енил)пиридинийбензилхлориду общей формулы (1), который может быть использован в качестве ингибитора коррозии стали в минерализованных агрессивных средах, например, в нефтяной промышленности или в системах оборотного водоснабжения В литературе отсутствуют сведения о синтезе и свойствах 3-(циклогекс-3-енил)пиридинийбензилхлорида, указанное соединение получено впервые.

Известно большое количество ингибиторов коррозии стали, полученных на базе полиалкилпиридинов, например, реагент И-1-В (ТУ 103238-74), являющийся смесью модифицированных полиалкилпиридинов или реагент ИКИХП-2, являющийся продуктом конденсации хлорметилированных продуктов с пиридином [Г.З.Ибрагимов и др. Применение химических реагентов для интенсификации добычи нефти. М.: Недра, 1991 г., с. 25].

Известные ингибиторы предназначены, главным образом, для предотвращения коррозии стали в соляной кислоте. Кроме того, они обладают чрезвычайно неприятным запахом, что требует специальных мероприятий по охране труда и экологии.

Наиболее близким по структуре и свойствам к заявляемому объекту является реагент Катапин-А [там же], полученный из алкилбензила хлористого и пиридина. Он является одним из лучших ингибиторов соляно-кислотной коррозии, но недостаточно эффективен в минерализованных средах с высоким содержанием кислорода.

Целью изобретения является выявление новых производных пиридина, эффективно снижающих коррозию стали в минерализованных агрессивных средах с высоким содержанием кислорода.

Поставленная цель достигается синтезом 3-(циклогекс-3-енил)пиридинийбензилхлорида формулы (1).

Предлагаемое соединение получают смешиванием эквимольных количеств 3-(циклогекс-3-енил)пиридина с хлористым бензилом при 120-130oC в течение 4-6 ч. Получают индивидуальный 3-(циклогекс-3-енил)пиридинийбензилхлорид (1) с выходом 95-99% по схеме: Синтез 3-(циклогекс-3-енил)пиридинийбензилхлорида (1) иллюстрируется примером 1.

ПРИМЕР 1. В стеклянный реактор, снабженный механической мешалкой, термопарой, обогревательной рубашкой и воронкой с противодавлением, загружают 0.1 моль хлористого бензила и 0.1 моль 3-(циклогекс-3-енил)пиридина, при 125oC перемешивают 5 ч. Получают 3-(циклогекс-3-енил)пиридинийбензилхлорид (1) с выходом 96%. Данные элементного анализа (1). Найдено, %: C 75.31; H 7.12; N 4.83; Cl 12.47. C18H20NCl. Вычислено, %: C 75.66; H 7.01; N 4.90; Cl 12.43.

Полученная смесь при температуре выше 140oC разлагается, плохо растворима в спиртах, кетонах, нерастворима в углеводородах, хорошо растворима в воде.

Испытания защитного действия 3-(циклогекс-3-енил)пиридинийбензилхлорида (1) в качестве ингибитора коррозии проводили в лабораторных условиях по ОСТ 39-099-79 "Ингибиторы коррозии. Метод оценки эффективности защитного действия ингибиторов коррозии в нефтепромысловых сточных водах", ВНИИСПТнефть, 1980.

В качестве коррозионных сред использовали модель сточной воды (МСВ) следующего состава (d = 1.1 г/см3): CaSO42H2O - 1.4 г/л; CaCl22H2O - 2.3 г/л; NaCl - 144 г/л; MgCl26H2O - 2.2 г/л.

Содержание O2 в МСВ составляло 4.5-5 мг/л и определялось по методу Винклера. Навеска ингибитора дозировалась в пределах 25-100 мг/л. В качестве металлических образцов использовали предварительно защищенные образцы стали 08 кл (ГОСТ 1050-74). Время испытаний составляло 6 ч, затем определялась скорость коррозии () и степень зашиты по формулам (2) и (3); где m - изменение массы, г; S - площадь образца, м2; - время испытания, ч;
где 1 - скорость коррозии в среде, г/м2час;
2 - скорость коррозии с ингибитором, г/м2час
Испытания защитного действия 3-(циклогекс-3-енил)пиридинийбензилхлорида (1) иллюстрируется примером 2.

ПРИМЕР 2. 3-(циклогекс-3-енил)пиридинийбензилхлорид получают согласно примеру 1 (загрузка 3-(циклогекс-3-енил)пиридина - 15.9 г, бензилхлорида - 12.65 г). Полученные 27.47 г твердой соли (1) растворяют в 27.47 г воды и дозируют в концентрации 25 мг/л в минерализованную сточную воду вышеописанного состава с содержанием кислорода 4.5-5 мг/л. В агрессивную среду помещают образец стали 08 кл (ГОСТ 1050-74) и выдерживают его в течение 6 ч при комнатной температуре. Скорость коррозии образца составляет 0.028 г(м2ч), а степень защиты - 95.1%.

Другие примеры, иллюстрирующие защитные свойства 3-(циклогекс-3-енил)пиридинийбензилхлорида, приведены в таблице.

Как показывают результаты испытаний, предлагаемый ингибитор проявляет высокий ингибирующий эффект 95.1-98.9% при концентрации ингибитора 25-100 мг/л, тогда как Катапин-А при концентрации 100 мг/л защищает сталь от коррозии на 96.3%.

Таким образом, 3-(циклогекс-3-енил)пиридинийбензилхлорид проявляет ингибирующие свойства (95.1-98.97.) в средах с высоким содержанием кислорода при низком расходе реагента (25-100 мг/л).


Формула изобретения

3-(Циклогекс-3-енил)пиридинийбензилхлорид формулы

в качестве ингибитора кислотной коррозии стали в минерализованных средах.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к новому химическому соединению 2-метил-3,4-триметиленпиридинийбензилхлориду, который может быть использован в качестве ингибитора коррозии стали в минерализованных средах в нефтяной промышленности или в системах оборотного водоснабжения
Изобретение относится к защите изделий от коррозии, в частности приборов, содержащих контакты алюминий-золото, и может быть использовано в производстве полупроводниковых приборов и интегральных схем

Изобретение относится к средствам защиты нефтепромыслового оборудования от сероводородной и углекислотной коррозии и может быть использовано в нефтедобывающей промышленности

Изобретение относится к нефтедобывающей промышленности и может быть использовано для защиты нефтепромыслового оборудования от коррозии в водных и водонефтяных средах, содержащих кислород

Изобретение относится к способам получения ингибированной соляной кислоты, применяемой в нефтедобыче, а именно к производству в том числе ингибированной соляной кислоты, используемой для обработки призабойных зон нефтяных и водонагревательных скважин

Изобретение относится к защите стальных деталей, машин, конструкций и сооружений, эксплуатируемых в водно-солевых средах (замкнутые системы охлаждения, технологические среды химических и других производств, резервуары для хранения углеводородных топлив), а также в почвах и морской воде, от коррозионного разрушения под воздействием среды и бактериальных клеток сульфатредуцирующих бактерий и предотвращения (уменьшения) водородного охрупчивания конструкций и деталей машин, выполняющих ответственные в них функции

Изобретение относится к способу защиты от коррозии скважинного стального оборудования и систем нефтесбора

Изобретение относится к способу защиты от коррозии скважинного стального оборудования и трубопроводов систем нефтесбора и сточных вод

Изобретение относится к нефтяной и газовой промышленности, а именно к составам ингибиторов коррозии, применяемым для предотвращения коррозии трубопроводов и оборудования, эксплуатируемых в кислых и сероводородсодержащих средах

Изобретение относится к новому химическому соединению 2-метил-3,4-триметиленпиридинийбензилхлориду, который может быть использован в качестве ингибитора коррозии стали в минерализованных средах в нефтяной промышленности или в системах оборотного водоснабжения

Изобретение относится к новым алкил(арил)пиридинийбензилхлоридам формулы I, где R - C2H5, C3H7, C4H9, C5H11, C6H13, C7H15, или формулы II, где R - CH3, C2H5, C3H7, C4H9, C5H11, или формулы III, где а) R1 = R4 = CH3, R2 = R3 = CH3, б) R1 = R4 = CH3, R2 = C2H5, R3 = CH3, в) R1 = R4 = C3H7, R2 = R3 = CH3, г) R1 = R4 = C3H7, R2 = C2H5, R3 = CH3, которые являются эффективными ингибиторами коррозии углеродистых сталей в средах с высоким содержанием кислорода

Изобретение относится к биотехнологии и может найти применение в медицине, ветеринарии, сельском хозяйстве и пищевой промышленности

Изобретение относится к новым производным глицерина общей формулы где k=1 или 0; В низший алкил или арилалкил; R1 ацетил, 2-алкоксибензоил или арил; n=0 или целое число от 1 до 3; G группа формулы или X- A выбрана из групп формул: (1) -NH-(CH2) где R2, R3 и R4 низшая алкоксигруппа; (2) -NH-(CH2)SO2-NH-R5 где R5 водород, алкил или CH р=1 или 2; (3) -NX-R6 где Х группа -СН- или атом азота; R6 группа -СОR7, где R7 алкил или алкокси, либо группа -0-С0-NH-R8, где R8 алкил; (4) -NH (5) -NH-(CH2)3-OR10, где R10 алкил; (6) -NH-(CH2)10-NH-CO-NR11R12, где R11 и R12 низший алкил; (7) -NH-CH где R13 низший алкоксикарбонил; (8) -NH-(CH2)3-CONO (9) -NH-(CH2)5-0-(CH2)5-0-(CH2)5-H (10) -NH-(CH2)3-0-CO-NH-R14, где R14 алкил; (11) -NH-CH (12) CH где m=0 или от 1 до 6; R9, R15 и R16 одинаковы или различны и представляют собой водород или алкоксигруппу, при условии, что, когда, k=0, группа А обязательно формула

Изобретение относится к гетероциклическим соединениям, в частности к получению тетрацианохинодиметанатов N-алкилпиридиниев ф-лы где R - неразветвленный алкильный радикал , содержащий в 16, 18 и 24 углеродных атома, которые используют для получения электропроводящих мономолекулярных пленок Ленгмюра-Блоджетта

Изобретение относится к гетероциклическим соединениям, в частности к получению четвертичных аммониевых соединений ф-лы Q-CH(OH)-CH2-NH- (R4)C(R)-(CH2)n-R, где О - группа ф-л ИЛИ R4-H или СН3; Rg-- H или ОН; RЈ - ОН в положении 4 или 5; R и R2 одинаковые - Н или OH-j; или 2; R3 четвертичные аммониевые группы, или их фармакологически приемлемых солей, которые проявляют бронхолитическую, спазмолитическую и антиаллергическую активность

Изобретение относится к регенерации облученного топлива и растворению оксидов металлов
Наверх