Оптико-акустический приемник

 

Изобретение относится к оптико-электронному приборостроению, а именно к приемникам инфракрасного излучения в широком спектральном диапазоне. Оптико-акустический приемник содержит камеру, имеющую входное окно, поглощающую пленку и зеркальную мембрану, оптический микрофон, диафрагму и основной фотоприемник. Оптический микрофон включает последовательно установленные источник излучения, основной конденсор, прозрачный растр и объектив, причем прозрачный растр установлен в фокальной плоскости объектива. В отличие от известного он снабжен дополнительными конденсором и фотоприемником, а также светоделительным элементом, установленным по ходу оптических лучей перед основным конденсором. При этом дополнительный конденсор расположен между источником излучения и светоделительным элементом, а дополнительный фотоприемник размещен на оси, перпендикулярной нормали к поверхности зеркальной мембраны и проходящей через центр светоделительной поверхности светоделительного элемента. Светоделительный элемент может быть выполнен с зеркальным покрытием, нанесенным на его светоделительную поверхность, в центре которой имеется прозрачная зона. При этом источник излучения и дополнительный конденсор установлены соосно с основным конденсором, а диафрагма с основным фотоприемником и дополнительный фотоприемник расположены соосно по разные стороны от светоделительного элемента. Кроме того, оптический элемент может быть выполнен с зеркальной зоной в центре его светоделительной поверхности, при этом источник излучения с дополнительным конденсором и дополнительный фотоприемник установлены соосно по разные стороны от светоделительного элемента, а диафрагма и основной фотоприемник расположены соосно с основным конденсором. Техническим результатом является повышение уровня информационного сигнала и чувствительности оптического микрофона. 2 з.п. ф-лы, 6 ил.

Предлагаемое изобретение относится к области оптико-электронного приборостроения, а именно к приемникам инфракрасного излучения в широком спектральном диапазоне.

Известно устройство для обнаружения ИК-излучения, содержащее камеру, в которой поглощается радиация и возникают колебания давления, и оптический микрофон, содержащий источник и приемник излучения, прозрачный растр, конденсор и объектив [1]. В известном устройстве применена децентрированная оптическая система, что приводит к значительным аберрациям и снижению уровня информационного сигнала и чувствительности оптического микрофона.

Наиболее близким к предлагаемому изобретению по технической сущности является оптико-акустический приемник [2], выбранный в качестве прототипа и также содержащий камеру, в которой поглощается радиация и возникают колебания давления, и оптический микрофон, содержащий объектив, в фокальной плоскости которого находится прозрачный растр. Через растр на мембрану конденсором проецируется изображение вспомогательного источника излучения, которое затем через вторую половину растра и конденсора отбрасывается зеркалом через диафрагму на фотоприемник. Основными недостатками этого устройства являются использование только одной полвины растра, что, так же как и в аналоге, приводит к значительным аберрациям и снижению уровня информационного сигнала и чувствительности оптического микрофона.

Основной задачей, на решение которой направлено изобретение, является повышение уровня информационного сигнала и чувствительности оптического микрофона.

Для решения поставленной задачи предложен оптико-акустический приемник, содержащий камеру, имеющую входное окно, поглощающую пленку и зеркальную мембрану, оптический микрофон, диафрагму и основной фотоприемник. Оптический микрофон включает установленные последовательно источник излучения, основной конденсор, прозрачный растр и объектив, причем прозрачный растр установлен в фокальной плоскости объектива. В отличие от известного он снабжен дополнительными конденсором и фотоприемником, а также светоделительным элементом, установленным по ходу оптических лучей перед основным конденсором. При этом дополнительный конденсор расположен между источником излучения и светоделительным элементом, а дополнительный фотоприемник размещен на оси, перпендикулярной нормали к поверхности зеркальной мембраны и проходящей через центр светоделительной поверхности светоделительного элемента. Светоделительный элемент может быть выполнен с зеркальным покрытием, нанесенным на его светоделительную поверхность, в центре которой имеется прозрачная зона. При этом источник излучения и дополнительный конденсор установлены соосно с основным конденсором, а диафрагма с основным фотоприемником и дополнительный фотоприемник расположены соосно по разные стороны от светоделительного элемента. Кроме того, оптический элемент может быть выполнен с зеркальной зоной в центре его светоделительной поверхности, при этом источник излучения с дополнительным конденсором и дополнительный фотоприемник установлены соосно по разные стороны от светоделительного элемента, а диафрагма и основной фотоприемник расположены соосно с основным конденсором.

Сущность предлагаемого изобретения заключается в том, что установка дополнительного конденсора и светоделительного элемента с определенной геометрией зеркального покрытия, нанесенного на его светоделительную поверхность, позволяет использовать практически все излучение источника и значительно уменьшить аберрации оптической системы, т.к. она становится осесимметричной по отношению к проходящему через нее излучению. Кроме того, установка дополнительного фотоприемника позволяет компенсировать постоянную составляющую сигнала, снимаемого с основного фотоприемника. Все это увеличивает амплитуду переменной составляющей информационного сигнала и увеличивает чувствительность оптического микрофона оптико-акустического приемника.

Сущность изобретения поясняется чертежами, где на фиг. 1 представлено конкретное исполнение устройства оптико-акустического приемника, на фиг. 2 - разрез по линии АА на фиг. 1, на фиг. 3, 5 и 6 - варианты исполнения оптико-акустического приемника, на фиг. 4 приведен разрез по линии ББ на фиг. 3.

Оптико-акустический приемник на фиг. 1 содержит камеру 1, имеющую входное окно 2, поглощающую радиацию пленку 3 и зеркальную мембрану 4, являющуюся одной из стенок 1. Соосно с камерой 1 на некотором расстоянии от мембраны 4 установлен объектив 5, в фокальной плоскости которого находится растр 6. За растром 6 последовательно установлены основной конденсор 7, светоделительный элемент, в данном случае представляющий собой оптический кубик 8, на гипотенузной грани которого нанесено зеркальное покрытие 14 с прозрачной зоной 15 в центре (фиг. 2), а также дополнительный конденсор 9 и источник 10 излучения. На оси, перпендикулярной нормали к поверхности зеркальной мембраны 4 и проходящей через центр светоделительной поверхности по разные стороны от кубика 8 установлены основной фотоприемник 11 с диафрагмой 12 и дополнительный фотоприемник 13.

На фиг. 3 представлен вариант схемы устройства в случае, когда в качестве светоделительного элемента использован оптический кубик 8 с зеркальным покрытием в центре его гипотенузной грани, разрез по гипотенузной грани дан на фиг. 4, где изображены прозрачная зона 16 и зеркальное покрытие 17. Остальные обозначения элемента те же, что и на фиг. 1. В этом случае источник 10 излучения и дополнительный конденсор 9 расположены соосно с дополнительным фотоприемником 13 на оси, перпендикулярной нормали к поверхности зеркальной мембраны 4 и проходящей через центр светоделительной поверхности кубика 8, а диафрагма 12 и основной фотоприемник 11 установлены соосно с основным конденсором 7.

Светоделительный элемент может быть выполнен в виде плоскопараллельной пластины, установленной под углом к оптической оси устройства. На фиг. 5 показан вариант схемы устройства в случае, когда на одной из сторон пластины 18 нанесено зеркальное покрытие, имеющее в центре прозрачную зону В. При этом расположение элементов аналогично схеме на фиг. 1. Остальные обозначения элементов те же.

На фиг. 6 представлен вариант схемы устройства в случае, когда в качестве светоделительного элемента использована плоскопараллельная пластина 18 с зеркальным покрытием Г в центре одной из ее сторон. Расположение элементов аналогично схеме, представленной на фиг. 3. Остальные обозначения элементов те же.

Оптико-акустический приемник на фиг. 1 работает следующим образом. Прерывистый поток излучения проходит через окно 2 камеры 1 и поглощается тонким алюминиевым слоем, нанесенным на пленку 3. Пленка поглощает неселективно радиацию в широкой спектральной области. Возникающие колебания давления колеблют зеркальную мембрану 4, являющуюся одной из стенок камеры 1. Мембрана 4 облучается от источника 10 излучения с помощью дополнительного конденсора 9, проектирующего источник излучения в промежуточную плоскость через гипотенузную грань оптического кубика, на которой нанесено зеркальное покрытие 14 с прозрачной зоной 15 в центре (фиг. 2). Этим обеспечивается работа оптической схемы всей апертурой. Промежуточное изображение перепроектируется далее конденсором 7, облучающим прозрачный растр 6, находящийся в фокальной плоскости объектива 5. В результате после объектива 5 параллельный пучок падает на зеркальную мембрану 4, отражается от нее и идет в обратном направлении. При этом конструктивные параметры оптической схемы подобраны таким образом, что в обратном ходе размер облучаемой площадки зеркальной зоны 14 гипотенузной грани кубика значительно превышает размер прозрачной зоны 15 (фиг. 2). Таким образом, обеспечивается прохождение через диафрагму 12 и попадание на фотоприемник 11 около 90% излучения, прошедшего через растр 6 и конденсор 7 в обратном ходе. Очень небольшая часть излучения отражается от гипотенузной грани кубика и попадает на фотоприемник 13, который включается дифференциально с фотоприемником 11 для исключения постоянной составляющей информационного сигнала. Под действием пульсаций давления зеркальная мембрана 4 колеблется, меняя свой радиус кривизны. В результате этого изображение растра 6 периодически смещается вдоль оптической оси 00, а это вызывает колебание потока излучения, направляемого от источника 10 излучения на фотоприемник 11.

В приведенной на фиг. 1 схеме оптико-акустического приемника уровень сигнала значительно повышается по сравнению и с аналогом и с прототипом, т.к. его оптическая схема позволяет использовать весь излучаемый источником 10 излучения поток, практически не срезая его. Схема осесимметрична, т.к. и в прямом и в обратном направлении проходят осесимметричные пучки, что приводит к резкому уменьшению поперечных аберраций и также повышает уровень сигнала. Кроме того, как уже говорилось выше, введение дополнительного фотоприемника 13 позволяет избавиться от постоянной составляющей сигнала и повысить уровень переменного, информативного сигнала.

В случае, когда гипотенузная грань кубика 8 прозрачна, а зеркальное покрытие нанесено в ее центре (фиг. 3), очень небольшая часть излучения от источника 10 излучения (фиг. 4) попадает на второй фотоприемник 13, а основная часть направляется вдоль оси 00 на конденсор 7 оптического микрофона. Принцип работы оптико-акустического приемника на фиг. 3, так же как и оптико-акустических приемников на фиг. 5 и 6, не отличается от принципа работы оптико-акустического приемника на фиг. 1, различны только исполнения светоделительного элемента и, в следствие этого, схемы расположения элементов, находящихся правее конденсора 7.

Таким образом, во всех предложенных вариантах исполнения оптико-акустического приемника обеспечивается повышение чувствительности оптического микрофона за счет осесимметричности проходящего через оптическую систему потока излучения и уменьшение величины аберраций, а также повышение уровня информационного сигнала за счет использования всей апертуры источника излучения и дифференциального включения дополнительного фотоприемника.

Источники информации 1. Журнал "Rev. Sci. Instr.", 1969, 40, с. 733, фиг. 2.

2. Оптический журнал, 1994, N 5, с. 5, 6.

Формула изобретения

1. Оптико-акустический приемник, содержащий камеру, имеющую входное окно, поглощающую радиацию пленку и зеркальную мембрану, оптический микрофон, включающий последовательно установленные источник излучения, основной конденсор, прозрачный растр, размещенный в фокальной плоскости объектива, а также диафрагму и основной фотоприемник, отличающийся тем, что он снабжен дополнительными конденсором и фотоприемником, а также светоделительным элементом, установленным по ходу оптических лучей перед основным конденсором, при этом дополнительный конденсор размещен между источником излучения и светоделительным элементом, а дополнительный фотоприемник размещен на оси, перпендикулярной нормали к поверхности зеркальной мембраны и проходящей через центр светоделительной поверхности светоделительного элемента.

2. Оптико-акустический приемник по п.1, отличающийся тем, что светоделительный элемент выполнен с зеркальным покрытием, нанесенным на его светоделительную поверхность, в центре которой имеется прозрачная зона, при этом источник излучения и дополнительный конденсор расположены соосно с основным конденсором, а диафрагма с основным фотоприемником и дополнительный фотоприемник установлены соосно по разные стороны от светоделительного элемента.

3. Оптико-акустический приемник по п.1, отличающийся тем, что светоделительный элемент выполнен с зеркальной зоной в центре его светоделительной поверхности, при этом источник излучения с дополнительным конденсором и дополнительный фотоприемник установлены соосно по разные стороны от светоделительного элемента, а диафрагма с основным фотоприемником расположены соосно с основным конденсором.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6



 

Похожие патенты:

Изобретение относится к устройствам для обнаружения и преобразования мощности излучения, а именно к оптико-акустическим приемникам, предназначенным для преобразования инфракрасной радиации от исследуемого объекта или источника в спектральном диапазоне от 0,3 до 2000 мкм в постоянное напряжение электрического тока, и может быть использовано в фотометрах

Изобретение относится к технике измерений

Изобретение относится к области оптического приборостроения и касается устройства для визуализации инфракрасного излучения. Устройство включает в себя матричную структуру из ячеек Голея, представляющую собой плотноупакованную систему герметизированных рабочих камер, наполненных рабочим газом, внутри которой располагается поглощающая излучение тонкая металлическая пленка. Один торец матричной структуры закрыт входным окном для электромагнитного излучения с нанесенным на внешнюю сторону прозрачным просветляющим покрытием. Второй торец матричной структуры закрыт гибкой мембраной с тонким металлизированным проводящим слоем. На внутреннюю поверхность выходного окна нанесено прозрачное проводящее покрытие и тонкий слой электролюминофора. Прозрачное проводящее покрытие, слой электролюминофора и тонкий металлизированный проводящий слой гибкой мембраны образуют электролюминесцентный конденсатор. Рабочая камера выполнена в виде цилиндра с высотой цилиндра, равной его диаметру. Технический результат заключается в повышении частоты исследуемого излучения, обеспечении автоматической компенсации изменений внешней температуры и давления и снижении весогабаритных характеристик устройства. 3 з.п. ф-лы, 1 ил.
Наверх