Способ очистки абгазов от мышьякорганических соединений

 

Изобретение относится к области охраны окружающей среды, конкретно к технологии очистки газовых выбросов от мышьякорганических соединений. Абгазы пропускают со скоростью 0,1-0,5 м/с при 10-30°С через слой активированного угля со значением рН 7,16-7,5. В качестве сорбента используют активированный уголь марки СКТ-3 и СКТ-6А. Способ обеспечивает очистку абгазов от триалкиларсинов с неполярными группами, а также с полярными группами - хлор, - хлорвинил и этоксигруппой (RO)3, где R - этил, бутил и изобутил. 1 з.п. ф-лы, 2 табл.

Изобретение относится к области охраны окружающей среды, конкретно к технологии очистки газовых выбросов от мышьякорганических соединений твердыми сорбентами.

Соединения мышьяка, содержащиеся в отходящих газах ряда производств (производство полупроводников, медицинских препаратов, легированных сплавов, модифицированных стекол и т.д.), представляют собой большую экологическую опасность.

В научно-технической и патентной литературе описаны способы очистки газа от арсина (AsH3) сорбцией твердыми сорбентами (журн. "Chemical Industry News", 1984 г. т. 28, N 10, стр. 790-791, авт. Sh. H. Iankhye "Очистка отходящих газов от арсина", авт. св-во СССР N 158151, МКИ B 01 D 53/02, опубл. 7.08.90 г. "Способ очистки газа от арсина", патент США N 4578236 МКИ C 07 C 7/12, НКИ 423/10, опубл. 25.04.80 г. "Способ удаления ядовитых газов", патент США N 4743435 МКИ B 01 D 53/34 НКИ 423/20, опубл. 10.05.88 г. "Способ очистки отходящего газа", патент США N 5087624, МКИ C 07 B 63/02 НКИ 423/10 "Состав, устройство и способ для сорбции газообразных соединений группы II-VII элементов").

Однако данные способы очистки не пригодны для удаления из отходящих газов мышьякорганических соединений.

Известны способы очистки отходящих газов от мышьякорганических соединений - триалкиларсинов. Термин "триалкиларсин" относится к соединениям, имеющим общую химическую формулу R3As, где R - свободный радикал из алкильной группы, имеющий от одного до шести атомов углерода, преимущественно от одного до трех.

Известен способ для сорбции триалкиларсинов, заключающийся в контакте очищающего газа с твердым сорбентом, содержащим золото в качестве минимум одного из компонентов (преимущественно окись алюминия и/или окись кремния (патент США N 4971608, МКИ В 01 D 53/04, НКИ 55/72, опубл. 20.11.90 г. "Сорбция и определение триакиларсинов").

По-другому известному способу сорбция триакиларсинов из газа осуществляется при контакте с сорбентом, содержащим сульфид меди, преимущественно сульфид одновалентной меди и неорганический носитель, преимущественно окись цинка и/или алюминия (патент США N 5024683 МКИ B 01 D 53/04, НКИ 55/74 "Сорбция триакиларсинов").

Однако известные способы не обеспечивают очистку газов мышьякорганических соединений с полярными группами.

Наиболее близким по технической сущности к предлагаемому способу является способ, по которому триакиларсины удаляют из газа при его контакте с сорбентом, содержащим элементарную серу и неорганический носитель, преимущественно окись алюминия, и/или окись кремния, и/или окись титана, и/или активированный уголь. Содержание серы в сорбенте составляет 1 - 50 вес.%, преимущественно от 3 - 25 вес.% (патент США N 5085844, МКИ B 01 D 53/14, НКИ 423/210, опубл. 4.02.92 г. "Сорбция триакиларсинов").

Этот способ, однако, также не обеспечивает очистку абгазов от мышьякорганических соединений с полярными заместителями.

Целью изобретения является разработка способа, обеспечивающего очистку абгазов от широкого круга мышьякорганических соединений, включая мышьякорганические соединения, как с неполярными группами, так с полярными группами - хлор, - хлорвинил, а также этоксигруппой (RO)3, где R - этил, бутил и изобутил. Указанная цель достигается предлагаемым способом, по которому очищаемую газовую смесь пропускают со скоростью 0,1-0,5 м/c при 10-30oC через слой активированного угля со значением pH 7,16-7,5. В качестве сорбента используют активированный уголь марки СКТ-3 и СКТ6-А.

Предлагаемый способ иллюстрируется следующими примерами. Все опыты проводили на динамическом адсорбционном приборе (заявка N 2000105654/12 от 10.03.2000 г.) в непрерывном режиме.

Изменение скорости паровоздушной смеси обеспечивалось изменением диаметра колонки с адсорбентом, вследствие чего на сорбент поступало постоянное количество примеси. Диаметр колонки варьировался от 5,5 до 22,0 мм.

Во всех примерах для одного и того же сорбируемого вещества проскоковая концентрация также была постоянной и определялась чувствительностью используемого газоанализатора. Количество очищаемой паровоздушной смеси (ПВС) в минуту составляло во всех опытах 1,5 л.

Пример 1. Поток ПВС, содержащий 2-хлор-винилдихлорарсин со скоростью 0,3 м/с при 20oC, подавался в стеклянную колонку диаметром 10 мм, заполненную активированным углем марки СКТ-3. Высота слоя сорбента составляет 4,5 см. Содержание 2-хлорвинилхлорарсина в ПВС после прохождения адсорбента непрерывно фиксировалось с помощью ионизационного газоанализатора. Время работы сорбента составляло 180 мин.

Результаты представлены в табл. 1.

Пример 2. Аналогично примеру 1 осуществляли очистку ПВС, содержащую в качестве примеси бутоксидихлорарсин. Скорость потока ПВС составляет 0,5 м/с при 10oC. Высота слоя сорбента составляла 6 см. Время очистки - 60 мин.

Результаты представлены в табл. 1.

Пример 3. Аналогично примеру 1 осуществляли очистку ПВС, содержащую в качестве примеси триэтоксиарсин. Скорость потока ПВС составляет 0,1 м/с при 15oC. Высота слоя сорбента составляла 2 см. Время работы сорбента - 15 мин. Результаты опыта представлены в табл. 1.

Пример 5. Аналогично примеру 1 осуществляли очистку ПВС, содержащую в качестве примеси трибутоксиарсин. Скорость потока ПВС содержала 0,5 м/с при 30oC. Высота слоя сорбента составляла 105 мин. Результаты опыта представлены в табл. 1.

Пример 6. Аналогично примеру 1 осуществляли очистку ПВС, содержащую изотрибутоксиарсин. Скорость потока ПВС составляет 0,4 м/с при 30oC. Высота слоя сорбента составляла 0,7 см. Время работы сорбента - 14 мин. Результаты очистки представлены в табл. 1.

Пример 8. Аналогично примеру 1 осуществляли очистку ПВС, содержащую в качестве примеси трибутиларсин. Скорость потока ПВС составляла 0,4 м/с при 20oC. Высота слоя сорбента составляла 2,5 см. Время работы сорбента - 99 мин. Результаты опыта представлены в табл. 1.

Пример 9. Аналогично примеру 1 осуществляли очистку ПВС, содержащую в качестве примеси 2-хлордивинилхлорарсин. Скорость потока ПВС составляла 0,05 м/с. При этом использовали адсорбционную колонку диаметром 22 мм. Время работы сорбента составляло 1080 мин при высоте слоя сорбента 4,5 см. Результаты представлены в табл. 1.

Пример 10. Аналогично примеру 1 осуществляли очистку ПВС, содержащую в качестве примеси 2-хлорвинилдихлорарсин. Отличалась только скорость, которая составляла 0,8 м/с. При этом использовали адсорбционную колонку диаметром 5,5 мм. Время работы сорбента составило 102 мин при высоте слоя сорбента 4,5 см.

Пример 11. Аналогично примеру 1 осуществляли очистку ПВС, содержащую в качестве примеси 2-хлорвинилдихлорарсин. Отличалась только температура процесса, которая составила 5oC. Время работы сорбента составило 220 мин при высоте слоя сорбента 4,5 см. Результаты опыта представлены в табл. 1.

Пример 12. Аналогично примеру 1 осуществляли очистку ПВС, содержащую в качестве примеси 2-хлорвинилдихлорарсин. Отличалась только температура процесса, которая составила 35oC. Время работы сорбента составило 170 мин при высоте слоя 4,5 см. Результаты опыта представлены в табл. 1.

Адсорбционную очистку ПВС от всех вышеперечисленных примесей проводили также на активированном угле марки СКТ6А (pH 7.5). При этом значения концентраций каждой примеси до сорбента и после сорбента соответствовали значениям этих же примесей, указанным в примерах NN 1-12.

Данные следующих примеров представлены в табл. 2.

Как видно из приведенных примеров, предлагаемый способ адсорбционной очистки обеспечивает эффективную очистку абгазов от широкого круга мышьякорганических соединений.

Снижение скорости потока ПВС низке рекомендуемой уменьшает производительность процесса при увеличении габаритов адсорбционной колонки (см. пример N 9).

Скорость потока > 0,5 м/с приводит к снижению емкости сорбента и времени его работы (см. пример 10).

Понижение температуры процесса ниже 10oC (пример 11) и повышение температуры выше 30oC (пример 12) не приводит к существенным улучшениям характеристик адсорбционной очистки, но требует дополнительных энергетических затрат на нагрев или охлаждение смеси.

Предлагаемый способ очистки абгазов от мышьякорганических примесей не нуждается в специальном оборудовании и материалах, позволяет извлекать токсичные примеси из больших объемов газов и может найти применение на предприятиях химической, металлургической и других отраслей, а также на объектах уничтожения мышьяксодержащих отравляющих веществ.

Формула изобретения

1. Способ очистки абгазов от мышьякорганических соединений путем контакта абгазов с твердым сорбентом, отличающийся тем, что поток абгазов пропускают со скоростью 0,1 - 0,5 м/с при 10 - 30oC через слой активированного угля с pH 7,16 - 7,5.

2. Способ по п.1, отличающийся тем, что в качестве сорбента используют активированный уголь марки СКТ-3 и СКТ-6А.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:
Изобретение относится к очистке сточных вод, в частности к извлечению мышьяка из водных растворов, а также может быть использовано для концентрирования этой примеси с целью последующего определения

Изобретение относится к неорганической химии, а именно к способам получения арсенидов железа
Изобретение относится к гидрометаллургии осмия, мышьяка и рения, в частности к методам переработки промывной серной кислоты, применяемой в системе мокрой газоочистки производств меди и никеля, и может быть использовано в технологии извлечения осмия, рения и мышьяка из кислых растворов

Изобретение относится к способам получения треххлористого мышьяка, используемого в электронной промышленности для получения арсенида галлия

Изобретение относится к химической технологии, в частности к производству неорганических соединений мышьяка

Изобретение относится к разработке новых, более продуктивных способов получения известных мышьяксодержащих соединений, в частности трехбромистого мышьяка, который может быть использован для нужд микроэлектроники
Изобретение относится к получению оксидов химических элементов, в частности оксида мышьяка, находящего применение в оптической промышленности

Изобретение относится к химической технологии, а именно к способам очистки кислых растворов от мышьяка, и может быть использовано, например, на предприятиях цветной металлургии для извлечения мышьяка из производственных растворов и сточных вод

Изобретение относится к способам получения арсенатов меди и может быть использовано в технологии переработки медьсодержащих сточных вод и мышьяксодержащих отходов химических и гидрометаллургических производств

Изобретение относится к физико-химической очистке дымовых газов и может быть использовано в энергетической, металлургической и других отраслях промышленности

Изобретение относится к химии и нефтепереработке

Изобретение относится к области адсорбционной техники и может быть использовано для очистки воздуха защитных сооружений гражданской обороны

Изобретение относится к адсорбционной очистке природных, нефтяных и других углеводородных газов и может быть использовано в газовой, нефтяной и нефтехимической промышленности для регенерации цеолитов процесса осушки и очистки газа от сернистых соединений

Изобретение относится к газовой промышленности, может быть использовано для глубокой осушки природного газа

Изобретение относится к биологической очистке газов и может быть использовано на предприятиях мебельного производства в процессе получения древесностружечных плит

Изобретение относится к области очистки газов от ядовитых примесей и может быть использовано для очистки газовых смесей или воздуха от примеси цианистого водорода
Наверх