Рутильный диоксид титана и способы его получения (варианты)

 

Способ получения рутильного диоксида титана включает нагревание водного оксида титана, который легко превращается в рутильный диоксид титана, до тех пор пока по крайней мере 99,5% по массе не будет находиться в рутильной кристаллической форме. Нагревание водного оксида титана до 950°С проводят со скоростью 1°С в минуту. Средний размер кристаллов 0,17-0,32 мкм. Геометрическое весовое стандартное отклонение частиц по размерам менее чем 1,25. Отношение среднего размера частиц к среднему размеру кристаллов менее чем 1,25: 1. Продукт имеет очень узкое распределение по размерам частиц и кристаллов и является превосходным пигментом. 4 с. и 26 з.п. ф-лы.

Настоящее изобретение относится к рутильному диоксиду титана и к способу его получения. В частности способ пригоден для получения рутильного диоксида титана, имеющего узкие распределения частиц и кристаллов по размерам.

Хорошо известно, что основным фактором, влияющим на кроющую способность пигмента из диоксида титана рутильной модификации (формы), является средний размер кристаллов пигмента. Для максимальной оптической эффективности важно также, чтобы были узкими распределение кристаллов по размерам и распределение частиц по размерам (которые содержат один или более кристаллов). Для диоксида титана, имеющего оптимизированные размеры кристаллов и распределение кристаллов по размеру, наилучшую эффективность получают, когда пигмент имеет высокую фракцию отдельных кристаллов (т.е. средний размер частицы близок к среднему размеру кристалла).

Задачей настоящего изобретения является создание способа получения рутильного диоксида титана, имеющего узкие распределения частиц и кристаллов по размерам и высокую фракцию отдельных кристаллов.

В соответствии с настоящим изобретением способ получения рутильного диоксида титана заключается в том, что подвергают прокаливанию водный оксид титана, который при нагревании до температуры 950oC со скоростью 1oC в минуту образует диоксид титана, по крайней мере 99,0% по массе которого находятся в рутильной кристаллической форме, причем прокаливание осуществляют до тех пор, пока не получат диоксид титана, в котором по крайней мере 99,5% по массе находятся в рутильной кристаллической форме.

Известно, что обычно прокаливание оксида титана до очень высокого содержания рутила приводит к спеканию отдельных кристаллов и, следовательно, к относительно широкому распределению частиц по размерам и относительно низкой фракции отдельных (одиночных) кристаллов. Неожиданно оказалось, что способ по настоящему изобретению способен дать новый продукт, имеющий узкие распределения кристаллов и частиц по размерам и высокую фракцию отдельных кристаллов, и, соответственно, вторым аспектом изобретения является рутильный диоксид титана, имеющий средний размер кристаллов в диапазоне 0,17-0,32 микрометра, распределение частиц по размерам с геометрическим весовым стандартным отклонением менее чем 1,25 и отношением среднего размера частиц к среднему размеру кристаллов менее чем 1,25:1.

Способ по настоящему изобретению отличается от традиционных способов использованием такой формы водного оксида титана, которая относительно легко рутилизируется. Обычной практикой является регулирование условий прокаливания (например, путем добавления к прокаливаемому материалу ингибиторов рутилизации) так, чтобы водный оксид титана превращался в рутильный диоксид титана относительно медленно, поскольку это обычно выгодно с точки зрения управления кальцинатором (обжигательная печь). Водный оксид титана, пригодный для использования в способе по настоящему изобретению, может быть получен многими способами, например добавлением к подаваемому в кальцинатор материалу промоторов рутила, уменьшением обычного количества ингибитора рутила, добавляемого к подаваемому в кальцинатор материалу, или использованием относительно большого количества рутил-промоторирующих центров (зародышей кристаллизации) (либо во время осаждения водного оксида титана, либо путем добавления в кальцинатор). Промоторы рутилизации, которые могут присутствовать во время прокаливания, включают соединения лития и цинка, а ингибиторы рутилизации, присутствие которых нужно регулировать, включают соединения алюминия, калия и фосфора.

Один предпочтительный вариант способа по настоящему изобретению включает гидролиз водного раствора сульфата титана в присутствии центров из диоксида титана в количестве от 0,2 до 4% по массе, вычисленных относительно потенциального TiO2, в растворе сульфата титана, для образования водного оксида титана и прокаливание указанного водного оксида титана в присутствии соединения натрия или соединения лития в количестве от 0,05 до 0,3% по массе, рассчитанного как оксид щелочного металла относительно массы водного оксида титана, рассчитанного в виде TiO2 и, необязательно, в присутствии соединения фосфора в количестве до 0,25% по массе, рассчитанного как P2O5 относительно массы водного оксида титана, вычисленной в виде TiO2, без уменьшенного введения другой добавки для прокаливания, причем прокаливание продолжают до тех пор, пока не будет получен диоксид титана, по крайней мере 99,5% по массе которого находятся в рутильной кристаллической форме.

Вариант этого предпочтительного способа включает дополнительное введение в водный оксид титана перед прокаливанием соединения алюминия. Однако важно, чтобы количество добавляемого соединения алюминия было строго регулируемым и было связано с наличием ниобия в водном оксиде титана. Соединения ниобия часто присутствуют в сырье, используемом для получения оксида титана, и их присутствие обычно вызывает обесцвечивание конечного диоксида титана рутильной формы. Это обесцвечивание минимизируют путем добавления достаточного количества соединения алюминия, обеспечивающего присутствие по крайней мере приблизительно эквимолярных количеств алюминия и ниобия. Обычно добавляют количество, слегка превышающее эквимолярное количество, чтобы гарантировать по крайней мере эквимолярные количества при изменениях содержания ниобия в ходе производства. Обычно количество добавляемого соединения алюминия составляет около 55% по массе, вычисленных в виде Al2O3 относительно массы присутствующего ниобия, вычисленной в виде Nb2O5. Возможно некоторое колебание, но количество добавляемого соединения алюминия обычно должно находиться в пределах от 52 до 62% по массе (в виде Al2O3) относительно массы ниобия (в виде Nb2O5) Другой предпочтительный вариант способа по настоящему изобретению включает гидролиз водного раствора сульфата титана в присутствии центров (зародышей) из диоксида титана в количестве от 0,2 до 4,0% по массе, вычисленных относительно потенциального TiO2 в растворе сульфата титана, для образования водного оксида титана и прокаливание указанного водного оксида титана в присутствии соединения калия в количестве от 0,10 до 0,40% по массе, вычисленного в виде K2O относительно массы водного оксида титана, вычисленной в виде TiO2, и, необязательно, в присутствии соединения фосфора в количестве до 0,15% по массе, вычисленного в виде P2O5, относительно массы водного оксида титана, вычисленной в виде TiO2, без умышленного введения другой добавки для прокаливания, причем прокаливание продолжают до тех пор, пока не будет получен диоксид титана, по крайней мере 99,5% по массе которого находятся в рутильной кристаллической форме.

Вариант осуществления этого предпочтительного способа включает добавление в водный оксид титана перед прокаливанием соединения алюминия. Как описано выше, алюминий добавляют с целью минимизации влияния примеси ниобия в оксиде титана. Поэтому количество добавляемого соединения алюминия находится, как описано выше, в пределах от 52 до 62% по массе (в виде Al2O3) относительно массы присутствующего ниобия (в виде Nb2O5).

В описанных выше предпочтительных вариантах водный оксид титана осаждают в присутствии зародышей (центров) диоксида титана. Такие зародыши и способ их получения хорошо известны в промышленности диоксида титана. Обычно зародыши являются рутил-промотирующими зародышами, которые обычно получают путем быстрого добавления водного раствора тетрахлорида титана, содержащего эквивалент около 200 граммов на литр TiO2 к раствору гидроксида натрия в воде.

Зародыши присутствуют в количестве от 0,2 до 4% по массе, вычисленных в виде TiO2, относительно массы потенциального TiO2 растворе сульфата титана. Предпочтительно, количество зародышей составляет от 1,0 до 2,0% по массе относительно потенциального TiO2.

Осажденный водный оксид титана отделяют от остального раствора сульфата титана обычно путем фильтрования с получением того, что обычно называют как "пульпа". Пульпу обычно промывают для удаления растворимых солей железа и уменьшения примеси серной кислоты, часто путем повторного суспендирования водой и повторного фильтрования.

В одном из предпочтительных способов во время прокаливания водного оксида титана присутствуют одно или несколько соединений лития или натрия. В другом предпочтительном способе присутствуют одно или несколько соединений калия. Обычно необходимо добавлять эти соединения до начала прокаливания. Как правило, могут быть использованы любые соединения лития, натрия или калия, такие как хлориды, сульфаты или гидроксиды, но предпочтительными соединениями являются карбонаты лития, натрия и калия.

В варианте использования лития или натрия количество присутствующего соединения лития или натрия составляет от 0,05 до 0,3% по массе, вычисленного в виде Li2O или Na2O относительно водного оксида титана, вычисленного в виде TiO2. Для соединений лития предпочтительное количество составляет от 0,05 до 0,15% Li2O по массе относительно TiO2, а для натрия предпочтительное количество составляет от 0,10 до 0,20% Na2O относительно TiO2.

В варианте, в котором в качестве добавки при прокаливании используют соединение калия, его количество составляет от 0,10 до 0,40% по массе, вычисленного в виде K2O относительно водного оксида титана, вычисленного в виде TiO2. Предпочтительно присутствующее количество составляет от 0,15 до 0,30% K2O по массе относительно TiO2.

В предпочтительных вариантах во время прокаливания необязательно присутствует соединение фосфора. Часто соединения фосфора присутствуют в водном оксиде титана вследствие наличия примесей фосфора в используемой руде. Однако обычно необходимо регулировать количество присутствующего фосфора путем добавления соединения фосфора. Подходящие соединения включают фосфорную кислоту или, что предпочтительно, фосфат аммония.

При использовании в качестве добавки к подаваемому в кальцинатор материалу натрия или лития количество присутствующего соединения фосфора, если его используют, составляет до 0,25% по массе, вычисленного в виде P2O5 относительно массы водного оксида титана, вычисленного в виде TiO2. Предпочтительно соединение фосфора присутствует в количестве, эквивалентном 0,05- 0,25% P2O5 относительно TiO2. При использовании в сочетании с соединением лития предпочтительное количество соединения фосфора составляет от 0,10 до 0,20% по массе, вычисленного в виде P2O5 относительно TiO2, а при использовании с соединением натрия предпочтительное количество составляет до 0,15% по массе, вычисленного в виде P2O5 относительно TiO2.

Когда в качестве добавки в кальцинаторе используют соединение калия, то количество присутствующего соединения фосфора, если его используют, составляет до 0,15% по массе, вычисленного в виде P2O5 относительно водного оксида титана, вычисленного в виде TiO2. Предпочтительно количество присутствующего фосфора находится в пределах от 0,05 до 0,15% по массе, вычисленного в виде P2O5 относительно оксида титана, вычисленного в виде TiO2.

Как указано выше, при осуществлении варианта любого из предпочтительных способов по настоящему изобретению добавляют порцию соединения алюминия. Важно, чтобы количество добавляемого соединения алюминия было, как указано выше, тесно связано с количеством присутствующего в "пульпе" ниобия, и потому фактическое используемое количество определяют путем анализа "пульпы" или исходной руды на ниобий. Обычно соединение алюминия присутствует в количестве не более чем 0,15% по массе, вычисленного в виде Al2O3 относительно оксида титана, вычисленного в виде TiO2. Используемое соединение алюминия может быть одним из нескольких соединений алюминия, включающих хлорид, гидроксид или нитрат алюминия, но предпочтительно используют сульфат алюминия.

В способе по настоящему изобретению водный оксид титана прокаливают любыми традиционными способами, известными в данной области техники. Существенной особенностью прокаливания является выполнение таких условий, которые гарантируют, что полученный диоксид титана содержит по крайней мере 99,5% диоксида в рутильной кристаллической форме. Предпочтительно выполняют условия, при которых по крайней мере 99,8% полученного диоксида титана находятся в рутильной кристаллической форме. Полезный продукт получают путем прокаливания оксида титана до момента, когда он содержит 99,9% по массе рутильного диоксида титана, и затем повышают температуру оксида титана еще на 30-70oC. Этот продукт имеет, как указано выше, узкое распределение частиц по размерам, а также обладает полезным свойством, заключающимся в наличии кристаллов, более скругленных и менее угловатых, чем у диоксида титана, полученного традиционными способами.

В описанных выше предпочтительных вариантах осуществления настоящего изобретения необходимая конверсия в рутил может быть обычно достигнута путем нагревания водного оксида титана до температуры в диапазоне 850-10000oC. Чаше эта температура находится в диапазоне 860-930oC.

Продукт по настоящему изобретению имеет, как установлено, узкие распределения кристаллов и частиц по размерам. Однако обычно материал, выгружаемый из кальцинатора, требует измельчения для оптимизации распределения частиц по размерам и для уменьшения размеров частиц и увеличения фракции отдельных (единичных) кристаллов в порошке диоксида титана. Может быть использован любой подходящий способ измельчения (размола) из тех многих, которые известны специалистам в данной области техники. Но предпочтительно используют песочную мельницу, в которой готовят дисперсию диоксида титана в воде и смешивают ее с частицами песка в зоне измельчения, где смесь перемешивают, например, группой дисков, установленных на вращающемся валу. Частицы песка действуют как размалывающая среда и уменьшают средний размер частиц диоксида титана.

Для получения нового продукта, являющегося одним из предметов настоящего изобретения, выполняют условия измельчения, обеспечивающие получение продукта, в котором отношение среднего размера частиц к среднему размеру кристаллов составляет менее чем 1,25:1. Является предпочтительным, чтобы выполняемые условия гарантировали, что это отношением будет менее чем 1,1:1.

Обычно средний размер частиц измеряют путем седиментации с использованием рентгеновского излучения (например, с помощью анализатора размеров Brookhaven BIXDC), и средний размер кристаллов определяют посредством просвечивающей электронной микроскопии на отшлифованном образце с анализом изображения полученной фотографии (например, с использованием анализатора изображения типа Ouantrmet 570).

Обычно размолотый диоксид титана имеет средний размер частиц (при определении путем седиментации с использованием рентгеновского излучения) менее чем 0,40 микрометра. Предпочтительно, средний размер составляет меньше чем 0,35 микрометра, а более предпочтительно, меньше чем 0,30 микрометра.

Обычно средний размер кристаллов продукта, полученного способом по настоящему изобретению, находится в диапазоне 0,17-0,32 микрометра и предпочтительно продукты имеют средний размер кристаллов в диапазоне 0,22-0,30 микрометра. Часто средний размер кристалла регулируют в соответствии с предполагаемым применением диоксида кремния. Например, когда диоксид титана используют в чернилах, он предпочтительно имеет средний размер кристаллов в диапазоне 0,23- 0,30 микрометра, а при использовании в красках предпочтительный продукт имеет средний размер кристаллов в пределах от 0,22 микрометра до 0,26 микрометра.

Далее частицы пигмента из диоксида титана обычно подвергают поверхностным обработкам, распространенным в данной отрасли промышленности. Например, частицы обычно покрывают неорганическим водным оксидом или фосфатом. Типичными оксидами являются оксиды кремния, титана, циркония и алюминия. Часто поверхность частиц обрабатывают также органическим соединением, таким как полиол или алканоламин. Типичными используемыми органическими соединениями являются триметилолпропан, пентаэритрит, триэтаноламин и триметилолэтан.

Целесообразно использовать дисперсию, которая является продуктом из песочной мельницы, для обработки одним или несколькими неорганическими соединениями, после чего пигмент отделяют, высушивают и, если нужно, подвергают тонкому измельчению.

Как уже было указано ранее, настоящее изобретение обеспечивает возможность получения нового диоксида титана, в котором геометрическое весовое стандартное отклонение размера частиц при определении с использованием анализатора размеров частиц Brookhaven BIXDC составляет менее чем 1,25. В предпочтительных продуктах по настоящему изобретению геометрическое весовое стандартное отклонение размера частиц составляет менее чем 1,22.

Обычно геометрическое весовое стандартное отклонение размера кристаллов нового диоксида титана составляет менее чем 1,28.

Отношение среднего размера частиц к среднему размеру кристаллов в этом продукте по настоящему изобретению составляет менее чем 1,25:1 и предпочтительно менее чем 1,1:1.

Несмотря на то, что в способе по настоящему изобретению диоксид титана прокаливают до более высокого содержания рутила, чем обычно считалось желательным, вредные оптические эффекты не наблюдаются. Кроме того, продукты, полученные в соответствии с предпочтительными вариантами способа по настоящему изобретение, показали, что имеют исключительно низкую истираемость.

Настоящее изобретение проиллюстрировано на следующих примерах.

ПРИМЕР 1 Готовят раствор сульфата титана путем вываривания шлакового исходного сырья с серной кислотой, растворения полученного в результате вываривания осадка разбавленной серной кислотой и осветления полученного раствора. Раствор сульфата титана имел отношение кислоты к титану, равное 1,81, отношение железа к титану, равное 0,12, и концентрацию, эквивалентную 240 граммам TiO2 на литр. Раствор нагревали до 85oC и добавляли в течение 5 минут зародыши диоксида титана в количестве, эквивалентном 1,9% по массе TiO2 относительно массы потенциального TiO2 в растворе. Температуру раствора поддерживали при 85oC в течение 2 часов, после чего ее повышали до температуры кипения и поддерживали на этом уровне 1 час. Затем раствор разбавляли до 170 граммов TiO2 на литр и поддерживали при кипении еще 15 минут с тем, чтобы образовалась суспензия водного оксида титана.

Эту суспензию промывали и выщелачивали, после чего смешивали с первичным кислым фосфатом аммония с получением эквивалента 0,10% P2O5 относительно TiO2 в суспензии и с карбонатом натрия в количестве, эквивалентном 0,19% Na2O относительно TiO2. Полученную суспензию сушили в течение ночи при 110oС и пропускали сквозь сито с размером отверстий 2 мм. Полученный порошок нагревали во вращающемся кальцинаторе со скоростью 1oC в минуту до тех пор, пока не было установлено, что продукт содержит 99,9% рутила.

Эта степень превращения была достигнута при 915oC.

Как было установлено, продукт имел средний размер кристаллов 0,26 микрометра, и геометрическое весовое стандартное отклонение размера кристаллов было равно 1,27 (анализатор изображения типа Quantimet 570). Продукт размалывали в песочной мельнице до тех пор, пока средний размер частиц не стал равным 0,274 микрометра при определении по оптической плотности. Затем его покрывали 2,6% оксида алюминия традиционными способами, включающими осаждение из сульфата алюминия и алюмината натрия. После высушивания и измельчения пигмент с покрытием пропускали два раза через микронную коллоидную мельницу (микронайзер), причем перед первым проходом его обрабатывали 0,60% триметилолпропана.

Конечный продукт имел средний размер частиц (Brookhaven BIXDC) 0,263 микрометра и исключительно узкое распределение частиц по размерам с геометрическим весовым стандартным отклонением 1,20.

При включении традиционным образом в состав нитроцеллюлозных чернил блеск чернил был замечательным и кроющая способность не ухудшилась.

ПРИМЕР 2 Готовили раствор сульфата титана таким же образом, как описано в примере 1, кроме того что сырьем был ильменит. Раствор имел отношение кислоты к титану, равное 1,80, отношение железа к титану, равное 0,50, и концентрацию, эквивалентную 202 граммам TiO2 на литр. Суспензию водного оксида титана получали путем гидролиза так, как описано в примере 1, кроме того, что количество используемых зародышей диоксида титана было эквивалентно 1,6% по массе TiO2 относительно массы потенциального TiO2 в растворе сульфата титана.

Суспензию промывали и выщелачивали, после чего смешивали с первичным кислым фосфатом алюминия с получением эквивалента 0,10% P2O5 относительно TiO2 в суспензии и с карбонатом натрия в количестве, эквивалентном 0,22% Na2O относительно TiO2. Эту обработанную суспензию нагревали во вращающемся кальцинаторе со скоростью 1oC в минуту до температуры 950oC, при которой, как было установлено, продукт содержал 99,9% рутила.

Как было установлено, продукт имел средний размер кристаллов 0,26 микрометра, и геометрическое весовое стандартное отклонение размера кристаллов было равно 1,26 (анализатор изображения Quantimet 570). Продукт подвергали грубому сухому помолу и затем помолу в песочной мельнице до среднего размера частиц 0,28 микрометра с геометрическим стандартным отклонением размера частиц 1,45 (при измерении посредством анализатора размеров частиц по оптической плотности). Затем его покрывали 2,5% (по массе) оксида алюминия в соответствии с традиционной технологией, высушивали и пропускали два раза через микронайзер.

Конечный продукт имел средний размер частиц (анализатор размеров частиц Brookhaven BXI) 0,27 микрометра. Геометрическое стандартное отклонение размера частиц составляло 1,24.

При включении продукта традиционным образом в состав нитроцеллюлозных чернил чернила имели прекрасный блеск при отличной кроющей способности.

ПРИМЕР 3 Готовили раствор сульфата титана таким же образом, как описано в примере 1. Раствор имел отношение кислоты к титану, равное 1,81, отношение железа к титану, равное 0,12, и концентрацию, эквивалентную 240 грамм TiO2 на литр. Суспензию водного оксида титана получали путем гидролиза так, как описано в примере 1, кроме того, что количество используемых зародышей диоксида титана было эквивалентно 1,8% по массе TiO2 относительно массы потенциального TiO2 в растворе сульфата титана.

Суспензию промывали и выщелачивали, после чего смешивали с первичным кислым фосфатом алюминия с получением эквивалента 0,12% P2O5 относительно TiO2 в суспензии и с карбонатом натрия в количестве, эквивалентном 0,20% Na2O относительно TiO2. Образец этой обработанной суспензии нагревали во вращающемся кальцинаторе со скоростью 1oC в минуту до температуры 950oC, при которой, как было установлено, продукт содержал 99,9% рутила. Массу суспензии нагревали во вращающемся кальцинаторе со скоростью 3oC в минуту до тех пор, пока диоксид титана не был консервирован до 99,9% рутила.

Как было установлено, продукт имел средний размер кристаллов 0,24 микрометра, и геометрическое весовое стандартное отклонение размера кристаллов было равно 1,27 (анализатор изображения типа Quantimet 570). Продукт подвергали грубому сухому помолу и затем помолу в песочной мельнице до среднего размера частиц 0,30 микрометра с геометрическим стандартным отклонением размера частиц 1,43 (при измерении посредством анализатора размеров частиц по оптической плотности). Затем его покрывали 2,5% (по массе) оксида алюминия в соответствии с традиционной технологией, высушивали и пропускали два раза через микронайзер.

Конечный продукт имел средний размер частиц (анализатор размеров частиц Brookhaven BXI) 0,30 микрометра. Геометрическое стандартное отклонение размера частиц составляло 1,24.

При включении продукта традиционным образом в состав нитроцеллюлозных чернил чернила имели прекрасный блеск при отличной кроющей способности.

ПРИМЕР 4 Готовили раствор сульфата титана таким же образом, как описано в примере 2. Раствор имел отношение кислоты к титану, равное 1,88, отношение железа к титану, равное 0,80, и концентрацию, эквивалентную 170 граммам TiO2 на литр. Суспензию оксида титана получали путем гидролиза так, как описано в примере 1, кроме того, что количество используемых зародышей диоксида титана было эквивалентно 1,0% по массе TiO2 относительно массы потенциального TiO2 в растворе сульфата титана.

Суспензию промывали и выщелачивали, после чего смешивали с первичным кислым фосфатом аммония с получением эквивалента 0,10% P2O5 относительно TiO2 в суспензии карбонатом калия в количестве, эквивалентном 0,22% K2O относительно TiO2, и сульфатом алюминия в количестве, эквивалентном 0,15% Al2O3 по массе относительно TiO2 (содержание ниобия в суспензии составляло 0,27% Nb2O5 по массе относительно TiO2. Образец этой обработанной суспензии нагревали во вращающемся кальцинаторе со скоростью 1oC в минуту до температуры 950oC, при которой, как было установлено, продукт содержал 99,4% рутила. Массу суспензии нагревали во вращающемся кальцинаторе со скоростью 3oC в минуту до тех пор, пока продукт не стал содержать 99,5% рутила.

Как было установлено, продукт имел средний размер кристаллов 0,26 микрометра, и геометрическое весовое стандартное отклонение размера кристаллов было равно 1,25 (анализатор изображения типа Quantimet 570). Продукт подвергали грубому сухому помолу и затем помолу в песочной мельнице до среднего размера частиц 0,34 микрометра с геометрическим стандартным отклонением размера частиц 1,43 (при измерении посредством анализатора размеров частиц по оптической плотности). Затем его покрывали 0,1% по массе фосфата (в виде P2O5), 0,4% по массе диоксида титана, 0,5% по массе диоксида циркония, 0,6% по массе диоксида кремния и 3,3% по массе оксида алюминия в соответствии с традиционной технологией, высушивали и пропускали два раза через микронайзер.

Конечный продукт имел средний размер частиц (анализатор размеров частиц Brookhaven BXI) 0,31 микрометра. Геометрическое стандартное отклонение размера частиц составляло 1,22.

При включении продукта традиционным образом в состав нитроцеллюлозных алкидных красок краски имели хороший блеск при высокой кроющей способности.

ПРИМЕР 5 Готовили раствор сульфата титана таким же образом, как описано в примере 1. Раствор имел отношение кислоты к титану, равное 1,81, отношение железа к титану, равное 0,12, и концентрацию, эквивалентную 240 граммам TiO2 на литр. Суспензию водного оксида титана получали путем гидролиза так, как описано в примере 1, кроме того, что количество используемых зародышей диоксида титана было эквивалентно 3,5% по массе TiO2 относительно массы потенциального TiO2 в растворе сульфата титана.

Суспензию промывали и выщелачивали, после чего смешивали с первичным кислым фосфатом аммония с получением эквивалента 0,10% P2O5 относительно TiO2 в суспензии и с карбонатом натрия в количестве, эквивалентном 0,20% Na2O относительно TiO2. Эту обработанную суспензию нагревали во вращающемся кальцинаторе со скоростью 1oC в минуту до температуры 860oC, при которой, как было установлено, продукт содержал 99,9% рутила. Затем нагревание продолжали до тех пор, пока температура не достигла 900oC, после чего прокаливание прекращали.

Как было установлено, продукт имел средний размер кристаллов 0,19 микрометра, и геометрическое весовое стандартное отклонение размера кристаллов было равно 1,25 (анализатор изображения типа Quantimet 570). Среднее отношение ширины к толщине частиц продукта составляло 1,49. Продукт подвергали грубому сухому помолу и затем помолу в песочной мельнице до среднего размера частиц 0,22 микрометра с геометрическим стандартным отклонением размера частиц 1,39 (при измерении посредством анализатора размеров частиц по оптической плотности). Затем его покрывали 0,5% (по массе) оксида алюминия в соответствии с традиционной технологией, высушивали и пропускали через микронайзер.

Было установлено, что продукт имеет высокую объемную плотность по отношению к традиционным продуктам, что, видимо, связано со сферичностью частиц.

ПРИМЕР А (сравнительный) Этот пример показывает, что прокаливание до по крайней мере 99,5% рутила важно для достижения требуемых пигментных свойств.

Готовили раствор сульфата титана таким же образом, как описано в примере 1. Раствор имел отношение кислоты к титану, равное 1,81, отношение железа к титану, равное 0,12, и концентрацию, эквивалентную 240 граммам TiO2 на литр. Суспензию водного оксида титана получали путем гидролиза так, как описано в примере 1, кроме того, что количество используемых зародышей диоксида титана было эквивалентно 1,8% по массе TiO2 относительно массы потенциального TiO2 в растворе сульфата титана.

Суспензию промывали и выщелачивали, после чего смешивали с первичным кислым фосфатом аммония с получением эквивалента 0,11% P2O5 относительно TiO2 в суспензии и с карбонатом натрия в количестве, эквивалентном 0,18% Na2O относительно TiO2. Эту обработанную суспензию нагревали во вращающемся кальцинаторе со скоростью 1oC в минуту до температуры 950oC, при которой, как было установлено, продукт содержал 99,9% рутила. Массу суспензии прокаливали во вращающемся кальцинаторе со скоростью 3oC в минуту и прекращали нагревание, когда продукт содержал 98,5% рутила.

Как было установлено, продукт имел средний размер кристаллов 0,21 микрометра, и геометрическое весовое стандартное отклонение размера кристаллов было равно 1,32 (анализатор изображения типа Quantimet 570). Продукт подвергали грубому сухому помолу и затем помолу в песочной мельнице до среднего размера частиц 0,29 микрометра с геометрическим стандартным отклонением размера частиц 1,47 (при измерении посредством анализатора размеров частиц по оптической плотности). Затем его покрывали 2,5% (по массе) оксида алюминия в соответствии с традиционной технологией, высушивали и пропускали два раза через микронайзер.

Конечный продукт имел средний размер частиц (анализатор размеров частиц Brookhaver BXI) 0,29 микрометра. Геометрическое стандартное отклонение размера частиц составляло 1,29.

При включении продукта традиционным образом в состав нитроцеллюлозных чернил чернила имели нормальный блеск и кроющую способность, сравнимую с традиционными пигментами.

ПРИМЕР В (сравнительный) Этот пример показывает, что "пульпа" водного оксида титана, не удовлетворяющая испытанию на быструю рутилизацию, не дает удовлетворительного продукта.

Готовили раствор сульфата титана таким же образом, как описано в примере 1. Раствор имел отношение кислоты к титану, равное 1,81, отношение железа к титану, равное 0,12, и концентрацию, эквивалентную 240 граммам TiO2 на литр. Суспензию водного оксида титана получали путем гидролиза так, как описано в примере 1, кроме того, что количество используемых зародышей диоксида титана было эквивалентно 2,2% по массе TiO2 относительно массы потенциального TiO2 в растворе сульфата титана.

Суспензию промывали и выщелачивали, после чего смешивали с первичным кислым фосфатом аммония с получением эквивалента 0,20% P2O5 относительно TiO2 в суспензии, карбонатом натрия в количестве, эквивалентном 0,02% Na2O относительно TiO2, карбонатом калия в количестве, эквивалентном 0,28% К2O относительно TiO2, и сульфатом алюминия в количестве, эквивалентном 0,20% Al2O3 относительно TiO2. Образец этой обработанной суспензии нагревали во вращающемся кальцинаторе со скоростью 1oC в минуту до температуры 950oC, при которой, как было установлено, продукт содержал 90,0% рутила. Массу суспензии нагревали со скоростью 3oC в минуту с контролем конверсии в рутил. При достижении продуктом 990oC он содержал 98,0% рутила, после чего прокаливание прекращали.

Как было установлено, продукт имел средний размер кристаллов 0,23 микрометра, и геометрическое весовое стандартное отклонение размера кристаллов было равно 1,32 (анализатор изображения типа Quantimet 570). Продукт подвергали грубому сухому помолу и затем помолу в песочной мельнице до среднего размера частиц 0,30 микрометра с геометрическим стандартным отклонением размера частиц 1,51 (при измерении посредством анализатора размеров частиц по оптической плотности). Затем его покрывали 3,2% (по массе) оксида алюминия и 0,8% по массе диоксида титана в соответствии с традиционной технологией, высушивали и пропускали два раза через микронайзер.

Конечный продукт имел средний размер частиц (анализатор размеров частиц Brookhaven ВIX) 0,29 микрометра. Геометрическое стандартное отклонение размера частиц составляло 1,31.

При включении продукта традиционным образом в состав нитроцеллюлозных чернил имели нормальный блеск и кроющую способность, сравнимую с традиционными пигментами.

Формула изобретения

1. Способ получения рутильного диоксида титана, включающий гидролиз водного раствора сульфата титана в присутствии зародышей из диоксида титана для образования водного оксида титана и прокаливание водного оксида титана, отличающийся тем, что водный оксид титана имеет свойство образования диоксида титана, по крайней мере 99,0 мас.% которого находится в рутильной кристаллической форме при нагревании до температуры 950°С со скоростью 1°С в минуту, и указанное прокаливание осуществляют до тех пор, пока не получат диоксид титана, в котором по крайней мере 99,5 мас.% находится в рутильной кристаллической форме.

2. Способ по п.1, отличающийся тем, что прокаливание продолжают до тех пор, пока не получают диоксид титана, в котором по крайней мере 99,9 мас.% находится в рутильной кристаллической форме, и затем температуру диоксида титана повышают дополнительно на 30-70°С.

3. Способ по любому из пп.1 и 2, отличающийся тем, что материал, выгружаемый из кальцинатора, подвергают помолу до тех пор, пока отношение среднего размера частиц к среднему размеру кристаллов не составит менее чем 1,25:1.

4. Способ по любому из пп.1-3, отличающийся тем, что материал, выгружаемый из кальцинатора, подвергают помолу до тех пор, пока средний размер частиц при измерении путем седиментации с использованием рентгеновского излучения не уменьшится до менее чем 0,40 мкм.

5. Способ по любому из пп.1-4, отличающийся тем, что диоксид титана покрывают после прокаливания неорганическим водным оксидом, фосфатом или органическим соединением.

6. Способ получения рутильного диоксида титана, включающий гидролиз водного раствора сульфата титана в присутствии зародышей из диоксида титана для образования водного оксида титана и прокаливание указанного водного оксида титана, отличающийся тем, что при гидролизе указанные зародыши из диоксида титана присутствуют в количестве от 0,2 до 4,0 мас.%, вычисленном относительно потенциального ТiO2 в растворе сульфата титана, и указанный водный оксид титана прокаливают в присутствии соединения натрия или соединения лития, в количестве от 0,05 до 0,3 мас.%, вычисленных в виде оксида щелочного металла относительно массы водного оксида титана, вычисленного как ТiO2 и, необязательно, в присутствии соединения фосфора в количестве до 0,25 мас. %, вычисленном в виде P2O5 относительно массы водного оксида титана, вычисленного как ТiO2, без намеренного введения другой добавки для прокаливания, причем указанное прокаливание включает нагревание указанного безводного оксида титана до температуры 950°С со скоростью 1°С в минуту и выдерживание указанного оксида титана примерно при 950°С до тех пор, пока не образуется диоксид титана, у которого по меньшей мере 99,5 мас.%, находится в рутильной кристаллической форме.

7. Способ по п.6, отличающийся тем, что соединение лития присутствует во время прокаливания в количестве от 0,05 до 0,15 мас.%, вычисленного в виде Li2O относительно массы водного оксида титана, вычисленного в виде ТiO2.

8. Способ по п.6, отличающийся тем, что соединение натрия присутствует во время прокаливания в количестве от 0,10 до 0,20 мас.%, вычисленного в виде Na2O относительно массы водного оксида титана, вычисленного в виде ТiO2.

9. Способ по п.6 или 7, отличающийся тем, что во время прокаливания присутствуют соединение лития и соединение фосфора, причем соединение фосфора присутствует в количестве от 0,10 до 0,20 мас.%, вычисленного в виде P2O5 относительно массы водного оксида титана, вычисленного в виде ТiO2.

10. Способ по п. 6 или 8, отличающийся тем, что во время прокаливания присутствует соединение натрия и, необязательно, присутствует соединение фосфора в количестве до 0,15 мас.%, вычисленного в виде P2O5 относительно водного оксида титана, вычисленного в виде ТiO2.

11. Способ по любому одному из пп.6-10, отличающийся тем, что во время прокаливания присутствует также соединение алюминия в количестве, которое по крайней мере приблизительно эквимолярно количеству любого ниобия, присутствующего в водном оксиде титана.

12. Способ по п. 11, отличающийся тем, что соединение алюминия присутствует в количестве от 52 до 62 мас.%, вычисленных в виде Аl2O3 относительно массы присутствующего ниобия, вычисленного в виде Nb2O5.

13. Способ по п. 11 или 12, отличающийся тем, что соединение алюминия присутствует в количестве до 0,15 мас.%, вычисленного в виде Аl2O3 относительно водного оксида титана, вычисленного в виде ТiO2.

14. Способ по любому одному из пп.6-13, отличающийся тем, что во время прокаливания водный оксид титана нагревают до температуры в пределах от 850 до 1000°С.

15. Способ по любому из пп.6-14, отличающийся тем, что прокаливание продолжают до тех пор, пока не получают диоксид титана, в котором по крайней мере 99,9 мас.% находится в рутильной кристаллической форме, а затем температуру диоксида титана повышают дополнительно на 30-70°С.

16. Способ по любому из пп.6-15, отличающийся тем, что материал, выгружаемый из кальцинатора, подвергают помолу до тех пор, пока отношение среднего размера частиц к среднему размеру кристаллов не составит менее чем 1,25 : 1.

17. Способ по любому из пп.6-16, отличающийся тем, что материал, выгружаемый из кальцинатора, подвергают помолу до тех пор, пока средний размер частиц при измерении путем седиментации с использованием рентгеновского излучения не уменьшается до менее чем 0,40 мкм.

18. Способ по любому из пп.6-17, отличающийся тем, что диоксид титана покрывают после прокаливания неорганическим водным оксидом, фосфатом или органическим соединением.

19. Способ получения рутильного диоксида титана, включающий гидролиз водного раствора сульфата титана в присутствии зародышей из диоксида титана для образования водного оксида титана и прокаливание указанного водного оксида титана, отличающийся тем, что при гидролизе указанные зародыши диоксида титана присутствуют в количестве от 0,2 до 4,0 мас.%, вычисляемом относительно потенциального TiO2 в растворе сульфата титана, и указанный водный оксид титана прокаливают в присутствии соединения калия в количестве от 0,10 до 0,40 мас.%, вычисленным в виде К2О относительно массы водного оксида титана, вычисленном в виде TiO2, и, необязательно, в присутствии соединения фосфора в количестве до 0,15 мас.%, вычисленном в виде P2O5 относительно массы водного оксида титана, вычисленного в виде TiO2, без намеренного введения другой добавки для прокаливания, причем указанное прокаливание включает нагревание указанного водного оксида титана до температуры 950°С со скоростью 1°С в минуту и выдерживание указанного оксида титана примерно при 950°С.

20. Способ по п.19, отличающийся тем, что во время прокаливания присутствует также соединение алюминия в количестве, которое по крайней мере приблизительно эквимолярно количеству любого ниобия, присутствующего в водном оксиде титана.

21. Способ по п. 20, отличающийся тем, что соединение алюминия присутствует в количестве от 52 до 62 мас.%, вычисленных в виде Аl2O3 относительно массы присутствующего ниобия, вычисленного в виде Nb2O5.

22. Способ по п. 20 или 21, отличающийся тем, что соединение алюминия присутствует в количестве до 0,15 мас.% вычисленного в виде Аl2O3 относительно водного оксида титана, вычисленного в виде TiO2.

23. Способ по любому из пп.19-22, отличающийся тем, что во время прокаливания водный оксид титана нагревают до температуры в пределах от 850 до 1000°С.

24. Способ по любому из пп.19-23, отличающийся тем, что прокаливание продолжают до тех пор, пока не получают диоксид титана, в котором по крайней мере 99,9 мас.% находятся в рутильной кристаллической форме и затем температуру диоксида титана повышают дополнительно на 30-70°С.

25. Способ по любому из пп.19-24, отличающийся тем, что материал, выгружаемый из кальцинатора, подвергают помолу до тех пор, пока отношение среднего размера частиц к среднему размеру кристаллов не составит менее чем 1,25 : 1.

26. Способ по любому из пп.19-25, отличающийся тем, что материал, выгруженный из кальцинатора, подвергают помолу до тех пор, пока средний размер частиц при измерении путем седиментации с использованием рентгеновского излучения не уменьшится до менее чем 0,40 мкм.

27. Способ по любому из пп.19-26, отличающийся тем, что диоксид титана покрывают после прокаливания неорганическим водным оксидом, фосфатом или органическим соединением.

28. Рутильный диоксид титана, имеющий средний размер кристаллов в диапазоне 0,17-0,32 мкм, отличающийся тем, что указанный рутильный диоксид титана имеет распределение частиц по размерам с геометрическим весовым стандартом отклонением менее чем 1,25 и отношение среднего размера частиц к среднему размеру кристаллов менее чем 1,25 : 1.

29. Рутильный диоксид титана по п.28, отличающийся тем, что он имеет геометрическое весовое стандартное отклонение размеров кристаллов менее чем 1,28.

30. Рутильный диоксид титана по п.28 или 29, отличающийся тем, что он имеет отношение среднего размера частиц к среднему размеру кристаллов менее чем 1,1 : 1.



 

Похожие патенты:
Изобретение относится к производству двуокиси титана, а именно к способам обесхлоривания двуокиси титана, полученной из хлорного сырья

Изобретение относится к способам получения сыпучих порошков, используемых в производстве стеклянных и керамических изделий

Изобретение относится к новым частицам диоксида титана, обладающим солнцезащитными свойствами и используемым в косметических составах

Изобретение относится к способу получения диоксида титана путем гидролиза растворов алкоксидов титана

Изобретение относится к способу получения пигментного диоксида титана из титансодержащих отходов, который может быть использован при производстве красок и в качестве компонента для создания белого цвета
Изобретение относится к области производства соединений титана, а именно диоксида титана

Изобретение относится к способу приготовления диоксида титана со структурой рутила, имеющего высокоразвитую поверхность
Изобретение относится к получению диоксида титана парофазным гидролизом галогенида титана
Изобретение относится к гидрометаллургической переработке титанокальциевого сырья, преимущественно перовскитового концентрата, и может быть использовано при получении пигментного диоксида титана, применяемого в производстве высококачественных эмалей и красок, светостойкой бумаги, пластмасс и т
Изобретение относится к составу и структуре композитных металл-полупроводниковых мезопористых материалов на основе диоксида титана и к способам получения таких материалов

Изобретение относится к способам получения диоксида титана хлоридным методом, который используют в радиоэлектронной промышленности для производства многих видов композиционных керамических материалов, а также в качестве сырья для получения титанатов металлов
Изобретение относится к химической промышленности и может быть использовано при производстве катализаторов фотохимических реакций или сорбентов-катализаторов гетерогенных фотохимических процессов окисления вредных органических соединений
Наверх