Тонкостенная несущая конструкция замкнутого сечения

 

Изобретение относится к строительству и может использоваться в несущих конструкциях каркасов, покрытий, колонн и других элементах жилых, производственных и общественных зданий и ряде других сооружений. Технический результат изобретения заключается в повышении несущей способности тонкостенной конструкции. Устройство выполнено из состыкованных между собой продольными сварными швами швеллеров и уголков с образованием (по меньшей мере одной пятигранной) замкнутых ячеек. Образованные пятигранные ячейки могут быть состыкованными стенками швеллеров, полками или обушками уголков с формированием комбинированных замкнутых сечений различной конфигурации. Ячейки несимметричные относительно одной из главных осей. Внутреннее пространство ячеек может быть заполнено бетоном или другим наполнителем. Центр тяжести сечения пятигранных ячеек практически равноудален от материала стенок. Благодаря предложенной форме тонкостенной несущей конструкции материал рационально распределен по ее сечению и сводится к минимуму. Кроме того, появляется возможность с минимальными затратами развивать конструктивную форму в различных не всегда ортогональных или параллельных направлениях, что расширяет спектр объемно-планировочных решений зданий или сооружений при нетрадиционном их решении. 4 з.п. ф-лы, 7 ил.

Изобретение относится к строительству и может быть использовано в качестве колонн, опорных конструкций эстакад, башен, градирен, элементов каркаса и ряде других сооружений и их частей, работающих на сжатие и сжатие с изгибом.

Известны устройства тонкостенных стержневых элементов из спаренных уголков, образующих квадратное сечение [1] (рис. 8.3Г, стр. 180), а также из гнутого тонкого листа, образующего замкнутые профили: овального, пятиугольного и др. сечений [2] (рис 19Г, стр. 55). Недостатком таких стержневых элементов является их малая несущая способность, связанная с потерей общей устойчивости квадратного профиля из-за малого радиуса инерции и с потерей местной устойчивости замкнутого гнутого профиля из-за малой толщины листа.

Наиболее близким к заявляемой тонкостенной конструкции является конструкция, образованная из двух швеллеров, состыкованных сварными швами в продольном направлении по перьям полок [1] (рис. 8.3Б, стр. 180). При этом увеличивается радиус инерции, а следовательно, и несущая способность стержневого элемента. Конструкция в сечении симметричная. Однако такое сечение не является равноустойчивым: соотношение радиусов инерции относительно центральных осей находится в диапазоне 1,05...1,5, что приводит к нерациональному использованию материала и его перерасходу. Кроме того, в диапазоне больших гибкостей и внешних нагрузок сплошное сечение из двух швеллеров не всегда обладает достаточной несущей способностью при сжатии с изгибом из-за ограниченности профилей проката, а переход на сквозной составной стержневой элемент типа фермы сопряжен с большими трудозатратами, увеличением строительной высоты, перерасходом металла и стоимости.

Задача изобретения - обеспечить высокую несущую способность тонкостенной несущей конструкции замкнутого сечения при малой металлоемкости и расширить область ее применения.

Задача решена следующим образом. В тонкостенной несущей конструкции, содержащей скрепленные в продольном направлении элементы, по меньшей мере один из которых выполнен в виде швеллера, один или более из вышеуказанных элементов выполнены из уголка или уголков, причем швеллеры и уголки скреплены между собой с образованием замкнутых ячеек и причем по меньшей мере одной пятигранной ячейки. Кроме того, образованные пятигранные ячейки состыкованы между собой стенками швеллеров, или полками уголков, или по обушкам уголков. Ячейки или часть ячеек заполнена наполнителем, например бетоном.

Таким образом, заявляемое устройство отличается от прототипа тем, что: - один или более из скрепленных в продольном направлении элементов выполнены в виде уголков; - швеллеры и уголки скреплены между собой с образованием замкнутых ячеек; - швеллеры и уголки скреплены между собой с образованием по меньшей мере одной замкнутой пятигранной ячейки; - в случае, если количество пятигранных ячеек более одной, они состыкованы по стенкам швеллеров, или по полкам уголков, или по обушкам уголков; - ячейки или часть ячеек заполнены наполнителем, например, бетоном.

Это говорит о новизне заявляемого устройства.

Благодаря предлагаемой форме тонкостенной несущей конструкции материал рационально распределен по ее сечению и сводится к минимуму при заданной внешней нагрузке. Пятигранная ячейка конструкции образована из двух несимметричных открытых профилей проката, формирует замкнутый контур сечения, несимметричный относительно одной из главных осей, но несмотря на это, в итоге обладает свойствами равноустойчивости. Центр тяжести сечения пятигранных ячеек практически равноудален от материала стенок. Такая конструкция оптимально работает в условиях центрального сжатия. По своим геометрическим характеристикам пятигранные ячейки более близки к идеальному симметричному сечению в виде круглой трубы, чем прототип. Материал конструкции полностью использует свои механические свойства во всех возможных направлениях потери устойчивости и расход его становится минимальным. Поскольку швеллеры и уголки скреплены между собой так, что образуют замкнутые ячейки, причем все или часть ячеек (по меньшей мере одна) пятигранные, можно рационально использовать заявляемую конструкцию, комбинируя ячейки, при сложном характере загружения: сжатии с изгибом и кручении, при разных величинах и направлениях внешних нагрузок. Заявляемый объект позволяет получить несущие конструкции, имеющие сечения разных форм, степени и направления развития в зависимости от величины и направления внешних нагрузок. Таким образом, комбинируя образованные швеллерами и уголками ячейки, можно обеспечить высокою несущую способность конструкции при минимальном расходе материала в широком диапазоне областей применения. Для повышения несущей способности тонкостенная конструкция замкнутого сечения может быть заполнена бетоном или другим наполнителем. Таким образом, при сохранении и соблюдении всех рабочих параметров заявляемая тонкостенная несущая конструкция замкнутого сечения требует в сравнении с прототипом меньше металла и обладает большей несущей способностью.

На фиг. 1-7 изображены поперечные сечения несущей конструкции с разными наружными контурами. На фиг. 1 представлена несущая конструкция из одной пятигранной ячейки; на фиг. 2 изображена эта же ячейка с бетонным заполнителем; на фиг. 3 - несущая конструкция с пятигранными ячейками, состыкованными по обушкам уголков; на фиг. 4 - несущая конструкция с пятигранными ячейками, состыкованными по полкам уголков; на фиг. 5 - несущая конструкция из пятигранных ячеек, состыкованных по обушкам уголков и примыкающими к этим ячейкам швеллерами; на фиг. 6 - несущая конструкция с пятигранными ячейками, состыкованная по стенкам швеллеров; на фиг. 7 - конструкция квадратного наружного контура, образованная из двух составных пятигранных ячеек и примыкающими к ним уголками.

Устройство содержит швеллеры 1 и уголки 2, которые связанны между собой посредством сварки в продольном направлении с образованием пятигранных ячеек. Ячейки или часть ячеек могут быть заполнены бетоном 3 или другим наполнителем. К пятигранным ячейкам могут быть присоединены посредством продольных сварных швов швеллеры 4 или уголки 5, образуя в свою очередь со швеллерами 1 или уголками 2 замкнутые ячейки (фиг. 5, 7).

Заявляемое устройство тонкостенной несущей конструкции рационально использовать в конструктивных формах и их составляющих элементах, работающих в условиях центрального сжатия, где равноустойчивость является критерием эффективности распределения материала и приводит к наименьшим его затратам. Равноустойчивость характеризуется соотношением радиусов инерции относительно центральных осей X:iY. При использовании швеллеров в диапазоне от N 6.5 до N 30 и соответствующих им уголков для формирования пятиугольного профиля это соотношение находится в диапазоне 1,0...1,15 (для прототипа 1,05...1,5). При одинаковой площади сечения металлических элементов, т.е. одинаковом расходе металла, минимальный радиус инерции заявляемого устройства больше аналогичного радиуса инерции прототипа в 1,08...1,22 раза, что следует из проведенных расчетов. А радиус инерции - параметр гибкости, от которого зависит несущая способность. В диапазоне гибкостей центрально-сжатого стержня от 50 до 120 несущая способность заявляемого устройства пятигранного контура больше прототипа на 2...40%. В этих же пределах находится и экономия металла при заданной несущей способности. Для большего повышения несущей способности без затрат металла внутренняя полость заявляемого устройства заполняется бетоном (фиг. 2), который включается в совместную работу с металлической обоймой и воспринимает часть нагрузки.

При больших значениях сжимающей внешней нагрузки в условиях центрального сжатия рационально использовать комбинированные составные профили крестообразного и квадратного контуров заявляемого устройства (фиг. 5 и 7). Для сжато-изогнутых стержней с преобладанием изгиба относительно оси x-x (фиг. 3) рационально использовать десятигранный контур заявляемого устройства, которое имеет увеличенный момент инерции относительно оси x-x, способный сопротивляться изгибу в этой плоскости при одновременно развитых радиусах инерции и площади сечения, способного сопротивляться сжатию. Для стержня сжатого и изгибаемого в двух ортогональных направлениях рационально использовать Г-образный профиль заявляемого устройства (фиг. 4). В этом случае моменты инерции сечения развиты в двух необходимых направлениях и увеличивают сопротивление изгибу относительно осей x-x и y-y, а развитые радиусы инерции и площади сечения позволяют элементу эффективно сопротивляться сжатию. Для сжатого стержня с гибкостью относительно оси y-y, значительно превышающей гибкость относительно оси x-x, рационально использовать составной профиль (фиг. 6) заявляемого устройства. Кроме того, заявляемое устройство тонкостенной несущей конструкции с минимальными затратами позволяют развивать конструктивную форму возводимой системы во многих различных, не всегда ортогональных или параллельных, направлениях, что расширяет спектр объемно- планировочных решений здания или сооружения при нетрадиционном их решении.

Источники информации 1. Беленя Е.И. Металлические конструкции. М. Стройиздат, 1986.

2. Артемьева И.Н. Алюминиевые конструкции. Л., Стройиздат, 1976.

Формула изобретения

1. Тонкостенная несущая конструкция замкнутого сечения, содержащая скрепленные между собой в продольном направлении элементы, по меньшей мере один из которых выполнен в виде швеллера, отличающаяся тем, что один или более скрепленных между собой в продольном направлении элементов выполнены в виде уголка или уголков, при этом швеллеры и уголки соединены между собой с образованием замкнутых ячеек, причем по меньшей мере одной пятигранной.

2. Изобретение по п.1, отличающееся тем, что пятигранные ячейки состыкованы между собой по стенкам швеллеров.

3. Изобретение по п.1, отличающееся тем, что пятигранные ячейки состыкованы между собой по полкам уголков.

4. Изобретение по п.1, отличающееся тем, что пятигранные ячейки состыкованы между собой по обушкам уголков.

5. Изобретение по любому из пп.1 - 4, отличающееся тем, что ячейки или часть ячеек заполнена наполнителем, например бетоном.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7



 

Похожие патенты:

Изобретение относится к строительству, в частности к сжатым железобетонным конструкциям

Колонна // 2121045
Изобретение относится к конструкциям строительных элементов и используется в качестве колонн высокой несущей способности (до 4-5 тыс

Изобретение относится к области строительства и может быть использовано для усиления стальных колонн промышленных зданий или подкрановых эстакад

Изобретение относится к строительству и может быть применено в колоннах зданий сельскохозяйственного назначения

Изобретение относится к строительству , а именно к конструкциям металлических каркасов производственных зданий, в частности к конструкциям колонн, устанавливаемых в зоне температурно-деформационных швов

Изобретение относится к строительству и может быть использовано при строительстве промышленных и сельскохозяйственных зданий и сооружений

Изобретение относится к строительству и может быть использовано при возведении металлических тонкостенных колонн в конструкциях гражданских, промышленных и общественных зданий комплектной поставки

Изобретение относится к области строительства и может быть использовано при изготовлении стоек из легких металлических конструкций для применения их в агрессивных средах

Изобретение относится к области строительства, в частности к металлическим конструкциям зданий и сооружений, эксплуатация которых усложняется агрессивным воздействием окружающей среды

Изобретение относится к области строительства, в частности к металлической колонне

Изобретение относится к области строительства, в частности к металлической колонне одноэтажного здания. Технический результат заключается в повышении надежности колонны. Колонна содержит сварной профиль, например двутавр и узлы соединения с покрытием и фундаментом. Узел соединения с покрытием содержит страховочные устройства, включающие коротыши, стопорные механизмы, опорные пластины, пружины сжатия и верхнюю пластину. Опорные пластины расположены по высоте колонны с постоянным шагом. Пружины сжатия установлены в футлярах между коротышами и ребрами жесткости двутавра. Верхняя пластина не соединена с двутавром. Коротыши включают жестко соединенные трубчатую и сплошную прямоугольную части. Сплошная часть имеет выточки, в которых установлены стопорные механизмы. Стопорные механизмы включают поворотные стопорные пластины и фиксирующие их упругие элементы. Опорные пластины установлены на внутренних поверхностях полок и поверхностях стенки двутавра. Трубчатая часть коротышей контактирует с конструкцией покрытия через верхнюю пластину. 7 ил.

Изобретение относится к области пожарной безопасности зданий, в частности, может быть использовано при изготовлении конструктивной огнезащиты стальной колонны здания. Техническим результатом изобретения является повышение надежности крепления элементов крупноразмерной облицовки, повышение предела огнестойкости стальной колонны, снижение риска обрушения колонны в начальной стадии пожара. Стальной колонный двутавр оборудован крепежными гайками и установочными винтами с потайными головками и ввинчиваемым заостренным концом. Элементы листовой облицовки прикреплены вплотную к полкам колонного двутавра, элементы плитной облицовки - вплотную к стенке двутавра. Толщина элементов огнезащитной облицовки заранее определена с учетом теплофизических свойств ее материалов, условий нагрева колонного двутавра при пожаре и нормативного предела огнестойкости колонны здания. 12 з.п.ф-лы, 2 ил.

Изобретение относится к области пожарной безопасности зданий и касается способа конструктивной огнезащиты стальной колонны здания. Техническим результатом изобретения является повышение надежности крепления элементов крупноразмерной облицовки, повышение предела огнестойкости стальной колонны, снижение риска обрушения колонны в начальной стадии пожара. Стальной колонный двутавр оборудуют крепежными гайками и установочными винтами с потайными головками и с ввинчиваемым заостренным концом. Элементы листовой облицовки прикрепляют вплотную к полкам колонного двутавра, элементы плитной облицовки - вплотную к стенке двутавра. Толщину элементов огнезащитной облицовки заранее определяют с учетом теплофизических свойств ее материалов и условий нагрева полок и стенки двутавра при пожаре.11 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к области строительства и может быть использовано для возведения мостов, дорог, а так же зданий и сооружений гражданского и промышленного назначения. Металлическая опора состоит из нескольких телескопически соединенных труб, выполненных из нержавеющей стали, для заполнения их жидкостью. Нижняя труба выполнена с закругленным нижним основанием, а по боковой поверхности этой трубы, в разбежку, выполнены отверстия. Кроме того, металлическая опора снабжена размещенным в верхней ее части гидравлическим амортизатором в виде труб с расположенными на внешней плоскости верхнего основания верхней трубы полукруглыми углублениями для шариковых подшипников и надетой на него трубой большего диаметра, имеющей съемную заглушку с выемками для шариковых подшипников, а образовавшийся зазор заполнен подшипниками закрытого типа, закрепленными с помощью кронштейнов на нижней трубе. Технический результат состоит в повышении сейсмоустойчивости, долговечности, обеспечении применения на различных типах грунта. 2 н. и 3 з.п. ф-лы, 4 ил.

Изобретение относится к области строительства и может быть использовано в узлах соединений перекрестно-стержневых конструкций или структурных плит покрытий (перекрытий) зданий и сооружений. Техническим результатом предлагаемого решения является сокращение дополнительных материальных и трудовых затрат при изготовлении, сборке и монтаже за счет повышения степени унификации его конструктивно-компоновочного оформления. Указанный технический результат достигается тем, что в узле соединения перекрестно-стержневых конструкций, включающем уголковые фасонки с болтовыми нахлесточными креплениями на торцах трубчатых или двутавровых стержней, каждое из перьев уголковых фасонок прорезано на грани с отверстиями под болты, симметрично отогнутые в противоположные стороны на толщину фасонок. 16 ил.
Наверх