Способ получения гексафторацетона

 

Изобретение относится к способу получения гексафторацетона, применяемого для модификации этилен-тетрафторэтиленового сополимера, при получении смазочных материалов, гидравлических жидкостей и ряда других ценных фторорганических продуктов. Способ заключается во взаимодействии гексафторпропилена с молекулярным кислородом в присутствии активированного угля, промотированного фторидом щелочного металла, при содержании последнего в катализаторе 5-60 вес.%, и процесс ведут при 50-300oС. Способ обеспечивает замену дорогостоящих катализаторов при получении целевого продукта с выходом 54,7-62,8%. 1 з.п. ф-лы, 1 табл.

Изобретение относится к способу получения перфторированных кетонов, а именно к способу получения гексафторацетона (ГФА), применяемого в различных областях техники, например, для модификации этилен-тетрафторэтиленового сополимера, при получении смазочных материалов, гидравлических жидкостей, лекарственных и пестицидных препаратов и ряда других ценных фторорганических продуктов.

Известны методы получения гексафторацетона каталитическим окислением гексафторпропилена. Так, например, получают ГФА реакцией гексафторпропилена (ГФП) с кислородом при температуре 80-300o, давлении от 0 до 20 кгс/см2 и соотношении ГФП:O2, равном 1:10-0,1 над фторированной окисью алюминия, содержащей от 0,5 до 50 вес.% фтора. Выход ГФА в расчете на конвертированный ГФП составляет до 64%, концентрация ГФА в реакционных газах до 18 oб.% [1].

Для усовершенствования данного способа с целью повышения селективности процесса и увеличения продолжительности работы катализатора (фторированных окиси алюминия или кремния) окисление ГФП ведут в присутствии воды в количестве 0,001-0,03 моля на моль ГФП. При этом достигается выход гексафторацетона на конвертированный ГФП до 72% при степени конверсии 15%. При увеличении конверсии ГФП до 34% выход гексафторацетона снижается до 29% [2].

Недостатками данных способов являются низкая степень конверсии исходного сырья, а также необходимость тщательного контроля за течением процесса, так как с увеличением конверсии ГФП имеет место неуправляемое протекание реакции окисления.

Известен способ получения гексафторацетона взаимодействием ГФП с кислородом в присутствии оксидов железа, олова или индия, которые высушивают в атмосфере инертного газа при 300-500oC. Реакцию ведут при температуре 150-300oC, давлении 0-20 кгс/см2 и мольном отношении ГФП:O2, равном 1:0,1-10. Время контакта зависит от температуры и находится в пределах 0,5 с - 30 мин. Выход ГФА на исходный ГФП составляет 38%, конверсия ГФП - 71% [3].

Недостатками способа являются сложность каталитических систем и невысокий выход целевого продукта.

Наиболее близким техническим решением является способ получения гексафторацетона взаимодействием ГФП с кислородом при температуре 130-250oC в присутствии катализатора.

В качестве катализатора используют редкие металлы, включающие рутений, родий, палладий, платину и иридий, нанесенные на активированный уголь в количестве 0,3-5,0 вес. %. Активированный уголь применяют в качестве носителя катализатора. Так для приготовления палладиевого катализатора активированный уголь пропитывают 1 н. раствором PdCl2HCl, промывают водой и высушивают при 120oC. После восстановления водородом при 450oC получают катализатор, содержащий 5 вес. % палладия. Процесс проводили в циркуляционном реакционном аппарате емкостью 0,32 л при начальном давлении 258 торр (0,35 кгс/см2), мольном отношении ГФП:O2 1:1 и температуре 130 или 250oC. Реакция продолжалась от 45 до 180 мин, за это время давление понижалось до постоянного значения. По данному способу выход гексафторацетона достигал 57% при конверсии ГФП до 65% [4].

Недостатками прототипа являются использование дорогостоящих катализаторов, трудоемкость в их приготовлении, а также применение циркуляционного метода со значительной длительностью для достижения необходимого эффекта по конверсии ГФП и выходу ГФА.

Задачей данного изобретения является упрощение процесса получения гексафторацетона и замена дорогостоящих катализаторов.

Поставленная задача достигается взаимодействием гексафторпропилена с молекулярным кислородом при температуре 50 - 300oC в присутствии катализатора, представляющего собой активированный уголь, промотированный фторидами щелочных металлов, такими как NaF, KF или CsF.

Процесс ведут непрерывно в проточной системе. Используют трубчатый металлический реактор, снабженный электрической печью, патрубками для подвода исходных газов и вывода продуктов реакции, гильзой для термопары. Реактор на 80% заполнен катализатором.

Для приготовления катализатора активированный уголь марки БАУ смешивают c водным раствором фторида щелочного металла, смесь выдерживают до 24 часов, после чего фильтруют и сушат при температуре не выше 150oC до достижения постоянного веса.

Содержание фторида в катализаторе от 5 до 60 вес.%. В пределах этого интервала изменение концентрации фторида не влияет на конверсию ГФП и выход гексафторацетона. Снижение содержания фторида менее 5% приводит к уменьшению выхода ГФА на конвертированный ГФП. Повышение концентрации фторида выше 60% существенно ухудшает физико-химические свойства катализатора (спекаемость) и не имеет практического значения.

Процесс ведут при температуре 50-300oC. При температуре ниже 50oC реакция не идет, а при повышении температуры выше 300oC происходит глубокое окисление ГФП до карбонилфторида и разложение катализатора.

Мольное отношение ГФП: O2 находится в пределах 1:0,1-10. При подаче кислорода в меньшем количестве реакция окисления не идет, а увеличение количества кислорода более мольного отношения 1:10 нецелесообразно и дает много побочных продуктов.

Продукты реакции, содержащие ГФА, карбонилфторид (COF2), 2-гидрогептафторпропан (хладон 227), а также непрореагировавший ГФП, конденсируют при низкой температуре, анализируют методом газо-жидкостной хроматографии и разделяют низкотемпературной ректификацией.

По разработанному способу конверсия ГФП составляет 80-90%, а выход гексафторацетона в расчете на конвертируемый ГФП - 54-62%.

Данный способ позволяет упростить процесс получения ГФА за счет проведения его в проточной системе, а также использовать более дешевые и доступные катализаторы, не требующие специальной обработки.

Отличительным признаком предлагаемого способа является использование в качестве катализатора активированного угля, промотированного фторидами щелочных металлов. Данный признак, отличающий заявленный способ от прототипа, не выявлен в других технических решениях.

Приведенные ниже примеры иллюстрируют предлагаемое изобретение.

Пример 1.

В трубчатый реактор, снабженный электрообогревом и термопарой, вместимостью 0,3 дм3 загружают 0,25 дм3 катализатора, представляющего собой активированный уголь, промотированный фтористым калием в количестве 50 вес.%. Катализатор нагревают в токе сухого азота при температуре 180-200oC в течение четырех часов, после чего подают ГФП и O2 со скоростью 1 дм/ч (6,7 г/ч) и 3 дм3/ч соответственно при температуре 100oC и мольном соотношении ГФП:O2 1:3.

Выходящую из реактора газовую смесь конденсируют в ловушке, охлаждаемой до -90oC, и анализируют методом ГЖХ.

За десять часов сконденсировано 78 г газовой смеси, содержащей до данным ГЖХ, об. %: 11,8 ГФП, 55,4 ГФА, 29,3 COF2 и 3,5 1,1,1,2,3,3,3-гептафторпропана (хладона 227). В результате низкотемпературной ректификации выделено 41,1 г ГФА. Конверсия гексафторпропилена составляет 88,2%, выход гексафторацетона в расчете на конвертированный ГФП - 62,8%.

Последующие синтезы (примеры 2-5) проведены аналогично примеру 1. Условия окисления ГФП и полученные результаты приведены в таблице.

Литература 1. Патент США N 4057584, C 07 C 45/04, опубл. 8.11.77. Изобр. за руб., 1978, в. 55, N 14, с. 90.

2. Патент США N 4165340, C 07 C 45/04, опубл. 21.08.79. Изобр. за руб., 1980, в. 55, N 5, с. 112.

3. Патент США N 4284822, C 07 C 45/32, опубл. 18.08.81. Изобр. за руб., 1982, в. 57, N 9, с. 100.

4. Заявка Японии N 4-55415, С 07 С 49/167, оп. 3.09.92. Изобр. стран мира, 1994, в. 41, N 11, с. 85 (прототип).

Формула изобретения

1. Способ получения гексафторацетона взаимодействием гексафторпропилена с молекулярным кислородом при повышенной температуре, в присутствии катализатора, содержащего активированный уголь, отличающийся тем, что в качестве катализатора используют активированный уголь, промотированный фторидом щелочного металла, при содержании последнего в катализаторе 5-60 вес.%, и процесс ведут при 50-300oС.

2. Способ по п. 1, отличающийся тем, что в качестве фторида щелочного металла используют фторид калия, или натрия, или цезия.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к способу получения гексафторацетона, применяемого для получения ряда ценных фторорганических продуктов
Изобретение относится к органической химии, а именно к получению гексафторацетона, используемого в производстве фторорганических мономеров, сополимеров, лекарственных средств

Изобретение относится к области органической химии, а именно к способу получения полифторалкилметилкетонов, являющихся промежуточными органическими соединениями, используемыми в химической и фармацевтической промышленности

Изобретение относится к органической химии, а именно к усовершенствованному способу получения фторсодержащих -дикетонов общей формулы I где Rf CF3.C8F17; HCF2, H(CF2)2

Изобретение относится к области органической химии, а именно к усовершенствованному способу получения фторалкилсодержащих --гидроксикетонов общей формулы 1 где Rf= CF3(a), C4F9(б), Н(CF2)4(в), C6F13(r), которые являются ценными интермедиатами для синтеза фторсодержащих ,-енонов, a, -эпоксикетонов, a-бром-b--гидроксикетонов, --меркаптокетонов, -- аминокетонов, ,-азиридинкетонов, a,-дибромкетонов, a-бром, a,-eнонов

Изобретение относится к химии фторорганических соединений, в частности к химии перфторкетонов, а именно к получению тригидрата гексафторацетона (ГФА), имеющего формулу CF3 CO-CF33H2O

Изобретение относится к области химической переработки компонентов древесины, а именно к получению ванилина путем окисления лигносодержащего сырья кислородом в щелочной среде в присутствии орто-фенантролина и азолигнина формулы где L - полимерная матрица сульфатного лигнина при нагревании, с последующим подкислением оксидата до рН 2

Изобретение относится к способу получения ванилина и сиреневого альдегида - продуктов тонкого органического синтеза

Изобретение относится к способу получения фторированного кетона нижеследующей формулы (5), который включает реакцию соединения нижеследующей формулы (3), имеющего содержание фтора по крайней мере 30 вес.%, с фтором в жидкой фазе, содержащей растворитель, выбранный из группы, состоящей из перфторалкана, перфторированного сложного эфира, перфторированного простого полиэфира, хлорфторуглеводорода, простого хлорфторполиэфира, перфторалкиламина, инертной жидкости, соединения нижеследующей формулы (2), соединения нижеследующей формулы (4), соединения нижеследующей формулы (5) и соединения нижеследующей формулы (6), с получением соединения нижеследующей формулы (4), а затем подвергание сложноэфирной связи в соединении формулы (4) реакции диссоциации в присутствии KF, NaF или активированного угля и при отсутствии растворителя: где группа RA представляет собой алкильную группу, частично галогенированную алкильную группу, содержащую образующий простой эфир кислородный атом алкильную группу или частично галогенированную содержащую образующий простой эфир кислородный атом алкильную группу, где каждая из указанных групп содержит от 1 до 10 атомов углерода;группа R AF, содержащая от 1 до 10 атомов углерода, является группой RA, которая была перфторирована;группа R B представляет собой алкильную группу, частично галогенированную алкильную группу, содержащую образующий простой эфир кислородный атом алкильную группу или частично галогенированную содержащую образующий простой эфир кислородный атом алкильную группу, где каждая из указанных групп содержит от 1 до 10 атомов углерода; группа RBF, содержащая от 1 до 10 атомов углерода, является группой RB, которая была перфторирована; группы RC и RCF являются одинаковыми, и каждая из групп RC и RCF содержит от 2 до 10 атомов углерода и представляет собой алкильную группу, частично галогенированную алкильную группу, содержащую образующий простой эфир кислородный атом алкильную группу или частично галогенированную содержащую образующий простой эфир кислородный атом алкильную группу, каждая из которых была перфторирована;или где группы RA и RB связаны друг с другом с образованием алкиленовой группы, частично галогенированной алкиленовой группы, содержащей образующий простой эфир кислородный атом алкиленовой группы или частично галогенированной содержащей образующий простой эфир кислородный атом алкиленовой группы, где каждая из указанных групп содержит от 3 до 6 атомов углерода; каждая из групп R AF и RBF является перфторированной группой, образованной RA и RB, и каждая из них содержит от 3 до 6 атомов углерода; и группы RC и RCF являются одинаковыми, и каждая из групп RC и R CF содержит от 2 до 10 атомов углерода ипредставляет собой алкильную группу, частично галогенированную алкильную группу, содержащую образующий простой эфир кислородный атом алкильную группу или частично галогенированную содержащую образующий простой эфир кислородный атом алкильную группу, каждая из которых была перфторирована
Наверх