Осветительная система

 

Осветительная система содержит по крайней мере две расположенные симметрично относительно источника излучения светооптические системы, каждая из которых состоит из двухкомпонентного конденсора и оптического дефлектора. Первый компонент конденсора выполнен в виде однолинзового коллектора с параболоидальной поверхностью. Второй компонент конденсора выполнен в виде положительной линзы. При этом выполняются указанные в формуле изобретения соотношения между фокусными расстояниями конденсора, первого и второго компонентов и расстоянием между первым и вторым компонентами. Оптический дефлектор может быть установлен между первым и вторым компонентами конденсора. Оптический дефлектор может быть выполнен в виде интерференционного зеркала или призмы полного внутреннего отражения. Для придания пучку лучей формы, отличной от круглой, на втором компоненте может быть установлена диафрагма. Обеспечивается собирание светового пучка от источника в телесном угле больше . 4 з. п. ф-лы, 1 ил.

Изобретение относится к оптическому приборостроению и находит применение в медицинской технике, в частности в стоматологии, гинекологии, хирургии, терапии.

Известен медицинский светильник (патент 1767283, F 21 M 1/00, F 21 S 1/00), содержащий как минимум одну оптическую систему, состоящую из интерференционного отражателя, галогенной лампы, теплофильтра, рассеивателя и противоослепляющего устройства, выполненного в виде решетки, ячейки которой имеют формы сот, выполненных из металла, причем стенки сот имеют теплопоглощающее покрытие. Противоослепляющее устройство наряду с полезным уменьшением теплового потока уменьшает пропускание видимого диапазона длин волн. Недостатком светооптической системы является и то, что габариты отражателя и теплофильтра соизмеримы с формируемым размером светового пучка, что приводит к необходимости использования нескольких галогенных ламп и оптических систем для освещения больших объектов.

Известен также конденсор (патент 205334, G02B 19/00), содержащий центральную линзовую систему, установленную перед источником света, сферическое зеркало, размещенное позади источника, и боковую линзовую систему с внешним зеркальным отражением. Недостатком его является необходимость использования торической линзы с коническим отражателем. Кроме того, сферическое зеркало не работает на боковую линзовую систему, поэтому освещенность изображения, создаваемая боковой линзовой системой, не увеличивается сферическим отражателем, что создает неравномерность в освещении объекта.

Технической задачей изобретения является создание простой осветительной системы, которая позволила бы собрать световой поток от источника в телесном угле, большем , и эффективно выделить из светового потока видимую глазом спектральную составляющую, отфильтровав инфракрасную часть излучения.

Для решения этой задачи предлагается осветительная система, содержащая по крайней мере две расположенные симметрично относительно источника излучения светооптические системы, каждая из которых состоит из оптического дефлектора, выполненного, например, в виде интерференционного зеркала или призмы полного внутреннего отражения, и двухкомпонентного конденсора, первый компонент которого - однолинзовый коллектор с параболоидальной поверхностью, второй компонент - положительная линза, причем соблюдены следующие соотношения: 0,7f'1f'21,5f'1, 1,3f'1f'34f'1, 0,5f'1d1,8f'1, где f'1 - фокусное расстояние конденсора, f'2 - фокусное расстояние первого компонента, f'3 - фокусное расстояние второго компонента, d - расстояние между первым и вторым компонентами; а для придания пучку лучей формы, отличной от круглой, на втором компоненте конденсора установлена диафрагма.

Сущность изобретения заключается в том, что осветительная система состоит из по крайней мере двух расположенных симметрично относительно источника излучения светооптических систем, каждая из которых содержит двухкомпонентный конденсор, обеспечивающий концентрацию потока излучения источника, и оптический дефлектор, например, в виде интерференционного зеркала, с помощью которого поток излучения разделяется таким образом, что видимая глазом спектральная составляющая излучения отражается от поверхности зеркала, а инфракрасная составляющая источника излучения пропускается и рассеивается. В качестве первого компонента конденсора применен однолинзовый коллектор с параболоидной поверхностью, в качестве второго компонента - положительная линза, при этом соблюдены следующие соотношения: 0,7f'1f'21,5f'1, 1,3f'1f'34f'1, 0,5f'1d1,8f'1, где f'1 - фокусное расстояние конденсора; f'2 - фокусное расстояние первого компонента;
f'3 - фокусное расстояние второго компонента;
d - расстояние между первым и вторым компонентами.

Для придания пучку лучей формы, отличной от круглой, на втором компоненте установлена диафрагма.

На чертеже изображена осветительная система, состоящая из двух расположенных симметрично относительно источника излучения 1 светооптических систем 2, каждая из которых содержит конденсор с компонентами 3, 5, между которыми расположено интерференционное зеркало 4. В качестве первого компонента конденсора 3 применен однолинзовый коллектор с параболоидальной поверхностью, второй компонент 5 - положительная линза, а для придания пучку лучей формы, отличной от круглой, на втором компоненте установлена диафрагма 6.

Система работает следующим образом.

Поток излучения от источника 1 проходит через первый компонент 3 конденсора, направляется на зеркало 4, при этом видимая часть спектра излучения отражается от зеркала и направляется на второй компонент 5 конденсора, а инфракрасная часть спектра излучения пропускается зеркалом и рассеивается в окружающем пространстве. Второй компонент 5 конденсора и диафрагма 6 окончательно формируют световой поток и направляют его на освещаемый объект.

По предлагаемой схеме разработан осветительный прибор для стоматологического кабинета с осветительной системой, имеющей угол охвата 3,5 радиана, состоящий из двух светооптических систем, каждая из которых имеет угол охвата 1,75 радиан при f'1= 57 мм, f'2= 50 мм, f'3= 135,5 мм, d= 60 мм. Используя 50 Вт лампу медицинский осветитель на расстоянии 800 мм формирует освещенность 65 000 люкс в центре объекта размером 14060 мм. Удельная тепловая облученность осветительной системы не более 5 Втм-2/к люкс.


Формула изобретения

1. Осветительная система, содержащая по крайней мере две расположенные симметрично относительно источника излучения светооптические системы, каждая из которых состоит из двухкомпонентного конденсора и оптического дефлектора, отличающаяся тем, что первый компонент конденсора выполнен в виде однолинзового коллектора с параболоидальной поверхностью, второй компонент конденсора - в виде положительной линзы, причем соблюдены следующие соотношения:
0,7f'1f'21,5f'1, 1,3f'1f'34f'1, 0,5f'1d1,8f'1,
где f'1 - фокусное расстояние конденсора;
f'2 - фокусное расстояние первого компонента;
f'3 - фокусное расстояние второго компонента;
d - расстояние между первым и вторым компонентами.

2. Осветительная система по п. 1, отличающаяся тем, что оптический дефлектор установлен между первым и вторым компонентами конденсора.

3. Осветительная система по п. 1 или 2, отличающаяся тем, что оптический дефлектор выполнен в виде интерференционного зеркала.

4. Осветительная система по п. 1 или 2, отличающаяся тем, что оптический дефлектор выполнен в виде призмы полного внутреннего отражения.

5. Осветительная система по любому из пп. 1-4, отличающаяся тем, что для придания пучку лучей формы, отличной от круглой, на втором компоненте установлена диафрагма.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к светотехнике и проекционным оптическим системам и может найти широкое применение в фотолитографии, фото- и кинотехнике

Изобретение относится к оптическим приборам и может быть использовано в фото- и кинообъективах, телескопах

Изобретение относится к приборостроению, в частности к оптико-механическим приборам для концентрации энергии источников энергии, и может быть использовано в микроскопах, телескопах, фотокинокамерах

Конденсор // 2032920
Изобретение относится к оптическим приборам, предназначенным для собирания световых лучей, идущих от источника света, и направления их на проецируемый предмет

Изобретение относится к оптическому приборостроению и может быть использовано в различных оптических системах, в частности в проекционных

Изобретение относится к области дорожно-сигнальной техники и предназначено для обозначения осевой линии дороги в виде точечной цепочки отраженного белого огня в темное время суток и в условиях тумана, дождя, а также для своевременного предупреждения водителей транспортных средств о снижении температуры на поверхности дорожного покрытия до минусовых значений и появлении на влажной поверхности дороги гололеда путем автоматической, автономной, без применения дополнительных источников энергии смены белого огня на красный

Конденсор может быть использован в оптических системах, например в проекционных, в том числе, и в ИК-системах. Конденсор состоит из трех одиночных линз и содержит две одинаковые плосковыпуклые линзы, первая из которых обращена по ходу лучей плоскостью к предмету, а последняя - плоскостью к изображению. Между ними находится вторая линза, выполненная в виде отрицательного мениска. Вторая линза имеет радиус оптической выпуклой поверхности, равный по модулю радиусу кривизны выпуклой оптической поверхности первой линзы, и обращена выпуклостью к плоскости изображения. Технический результат - увеличение линейного поля в пространстве предметов при сохранении высокого качества изображения. 1 ил., 2 табл.

Лазерный диод содержит излучающий элемент с линзой для формирования излучения. Линза включает центральную зону, которая имеет оптическую силу и обеспечивает коллимирование потока излучения. Лучи, прошедшие через центральную зону, отражаются от внешней наклонной грани линзы, которая выводит излучение наружу. Технический результат заключается в обеспечении максимальной плотности светового потока излучения в направлении под требуемым углом к продольной оси контсрукции. 1 ил.

Линза для формирования излучения лазерного диода включает расположенные по ходу излучения излучающего элемента диода внутреннюю и внешнюю поверхности. Центральная зона внутренней поверхности имеет оптическую силу, обеспечивающую коллимирование потока излучения. Внешняя поверхность линзы имеет призменную форму, вершина которой расположена от источника излучения, и содержит основную поверхность, расположенную в непосредственной близости от излучающего элемента диода, и вспомогательную поверхность, установленную под углом к продольной оси линзы и к основной поверхности. Углы расположения внешней основной и вспомогательной поверхностей линзы выбраны таким образом, чтобы обеспечить угол полного внутреннего отражения. Поток излучения излучающего элемента полностью отражается от внутренней стороны основной поверхности внутрь корпуса линзы и выходит под прямым углом к ее вспомогательной поверхности. Технический результат заключается в создании оптического устройства, обеспечивающего максимальную плотность светового потока излучения светодиода в направлении под требуемым углом к продольной оси оптического устройства, характеризующегося простотой конструкции. 1 ил.

Осветительное устройство включает в себя светодиод, блок собирающих линз, на который падает свет от светодиода, и элемент преобразования поляризации. Линзой, образующей поверхность выхода света в блоке собирающих линз, является асферическая линза, имеющая осесимметричную форму и сечение асферической формы при сечении плоскостью, параллельной световой оси. Поверхность выхода света асферической линзы имеет функцию коллимирования и последующего излучения света, который был излучен из центра светодиода, в области, близкой к световой оси, и излучения света так, чтобы он сходился к световой оси в области, далекой от световой оси. Технический результат - обеспечение равномерности освещения элемента преобразования поляризации. 2 н. и 5 з.п. ф-лы, 12 ил.

Изобретение может использоваться в гелиотехнике, в частности, в концентраторах солнечной энергии. Концентратор содержит симметричную отражающую поверхность, выполненную в виде фоклина, и прямоугольное выходное окно для размещения приемника излучения, совпадающее с фокальным пятном концентратора. Степень концентрации в каждой точке фокального пятна одинакова. Отражающая поверхность состоит из плоского и криволинейного участков. Образующая отражающей поверхности описывается системой уравнений, учитывающей координаты точки падения солнечного луча на концентратор, коэффициент концентрации, ширину фокального пятна, размер апертуры концентратора и координаты линии стыковки плоского и криволинейного участков отражающей поверхности. Технический результат - уменьшение отражения излучения от рабочей поверхности приемника излучения и повышение эффективности преобразования. 1 ил., 1 табл.

Изобретение относится к области светотехники и касается оптической системы для коллимации света. Оптическая система включает в себя тело и выемку, сформированную на первой стороне тела. Выемка имеет центральную и боковую поверхности ввода света и центральную поверхность выхода света, предусмотренную на второй стороне тела, противоположной первой стороне. Центральная поверхность ввода света расположена относительно центральной поверхности выхода света таким образом, что свет, падающий на центральную поверхность ввода света, направляется к центральной поверхности выхода света. На боковой поверхности тела предусмотрена поверхность полного внутреннего отражения, расположенная таким образом, что поступающий свет, падающий на боковую поверхность ввода света, принадлежащую выемке, направляется к поверхности полного внутреннего отражения и отражается ко второй стороне тела. Кроме того, оптическая система включает в себя зону подавления, окружающую центральную поверхность ввода света. Конфигурация зоны подавления обеспечивает предотвращение выхода попадающего в зону подавления света из тела через вторую сторону. Технический результат заключается в уменьшении неравномерности испускаемого света. 2 н. и 10 з.п. ф-лы, 7 ил.
Наверх