Сплав на основе алюминия и изделие, выполненное из него

 

Изобретение относится к металлургии, в частности к составам алюминиевых сплавов, и может быть использовано в разработке конструкционных материалов для изготовления изделий авиакосмической техники, в том числе и работающих при криогенных температурах. Сплав также может использоваться в качестве присадочного материала при изготовлении сварных конструкций выше названных изделий из деформированных и литейных алюминиевых сплавов систем Al-Cu, Al-Cu-Li, а также для сварки комбинированных лито-деформированных конструкций. Сплав на основе алюминия и изделие, выполненное из него, содержат следующие компоненты, мас.%: медь 6,0 - 8,5, марганец 0,1 - 0,4, титан 0,05 - 0,2, цирконий 0,08 - 0,25, скандий 0,1 - 0,4, по крайней мере три компонента, выбранных из группы, содержащей: бор 0,0005 - 0,005, бериллий 0,0001 - 0,001, лантан 0,05 - 0,2, иттрий 0,05 - 0,15, церий 0,05 - 0,15, алюминий - остальное. Техническим результатом изобретения является повышение пластичности и трещиностойкости как самого сплава, так и сварных соединений сплавов типа 1460, выполненных с применением данного сплава в качестве присадочного материала, что обеспечивает надежность и долговечность. 2 с.п. ф-лы, 2 табл.

Изобретение относится к области металлургии алюминиевых сплавов. Такие сплавы могут быть использованы как конструкционные материалы для изготовления изделий авиакосмической техники, в том числе и работающих при криогенных температурах. Сплав может использоваться в качестве присадочного материала при изготовлении сварных конструкций вышеназванных изделий из деформированных и литейных алюминиевых сплавов систем Аl-Сu, Al-Сu-Li, а также для сварки комбинированных лито-деформированных конструкций.

Известен сплав на основе алюминия /1/, содержащий, мас.%: Медь - 5,8-6,8 Марганец - 0,2-0,4 Цирконий - 0,1-0,25 Ванадий - 0,05-0,15 Титан - 0,02-0,1 Алюминий - Остальное Сплав имеет ряд недостатков. Прочность сварного соединения невысока и составляет 250-270 МПа, при низком уровне пластичности и ударной вязкости (угол загиба сварного соединения меньше 40o, ударная вязкость по сварному шву примерно 150 кДж/м2). Склонность к образованию горячих трещин при сварке, определяемая по пробе МВТУ, высокая (Акр составляет 0,09 м/час при сварке без присадки и 0,15 м/час при сварке с использованием присадочного материала того же состава). Все это ограничивает применение сплава в высоконагруженных сварных конструкциях.

Наиболее близким к предложенному сплаву по технической сущности и достигаемому эффекту является сплав /2/, принятый за прототип, следующего химического состава, мас.%: Медь - 5,0-5,5 Марганец - 0,2-0,6
Титан - 0,1-0,4
Цирконий - 0,1-0,4
Хром - 0,1-0,4
Кадмий - 0,05-0,25
Стронций или барий - 0,01-0,1
Алюминий - Остальное
Недостатками сплава являются пониженные значения пластичности и трещиностойкости, как самого сплава, так и сварных соединений, выполненных с применением данного сплава в качестве присадочного материала. Значения критической скорости деформации (Акр) составляют 0,15 м/час, что совершенно недостаточно для получения качественных и надежных сварных соединений.

Изготовление сварных конструкций из этого сплава связано с возникновением большого количества дефектов типа горячих трещин, что значительно снижает показатели надежности и долговечности изделия.

Снижение пластичности и трещиностойкости связано с образованием грубых нерастворимых фаз AlCuCd.

Технической задачей данного изобретения является разработка состава алюминиевого сплава, обеспечивающего повышение пластичности и трещиностойкости, как самого сплава, так и сварных соединений сплавов типа 1460, выполненных с применением данного сплава в качестве присадочного материала.

Изделия из этого сплава, в том числе и сварные конструкции, должны иметь повышенные характеристики надежности и долговечности.

Для достижения поставленной технической задачи предлагается сплав на основе алюминия и изделие, выполненное из него. Сплав содержит медь, марганец, титан, цирконий, в который дополнительно введены скандий и по крайней мере три компонента, выбранные из группы, содержащей: бор, бериллий, лантан, иттрий, церий, при следующем соотношении компонентов, мас.%:
Медь - 6,0-8,5
Марганец - 0,1-0,4
Титан - 0,05-0,2
Цирконий - 0,08-0,25
Скандий - 0,1-0,4
и по крайней мере три компонента, выбранные из группы, содержащей, мас. %:
Бор - 0,0005-0,005
Бериллий - 0,0001-0,001
Лантан - 0,05-0,2
Иттрий - 0,05-0,15
Церий - 0,05-0,15
Алюминий - Остальное
Изделие из сплава на основе алюминия, отличающееся тем, что оно выполнено из сплава следующего химического состава, мас.%:
Медь - 6,0-8,5
Марганец - 0,1-0,4
Титан - 0,05-0,2
Цирконий - 0,08-0,25
Скандий - 0,1-0,4
и по крайней мере три компонента, выбранных из группы содержащей:
Бор - 0,0005-0,005
Бериллий - 0,0001-0,001
Лантан - 0,05-0,2
Иттрий - 0,05-0,15
Церий - 0,05-0,15
Алюминий - Остальное
При заявленном содержании и соотношении компонентов в предлагаемом сплаве образуются вторичные выделения дисперсных частиц интерметаллидов различного состава (в зависимости от системы легирования), содержащих алюминий, скандий, лантан, бор, иттрий, церий. Образуется мелкозернистая недендритная структура металла шва и зоны сплавления за счет наличия большого числа центров кристаллизации. Кроме того, эти элементы оказывают положительное влияние на структуру границ зерен при кристаллизации шва, что приводит к замене хрупкого зернограничного разрушения металла при динамических нагрузках на вязкое транскристаллитное. В итоге, применение данного материала в качестве основного материала и присадочного для сварки сплавов типа 1460 позволяет повысить значения трещиностойкости, ударной вязкости и пластичности сварного соединения. Изделия из этого сплава обладают повышенной надежностью и работоспособностью.

Для осуществления конкретного примера были выплавлены сплавы, состав которых приведен в таблице I. Слитки размером 70 мм/300 мм после гомогенизации при температуре 525oС, 12 ч и механической обработки на размер 60 мм х 250 мм, подвергались горячему прессованию при температуре 400oС на прутки диаметром 6 мм. Затем проводилось волочение с промежуточными отжигами до получения проволоки диаметром 2 мм. Свойства присадочных материалов оценивались при сварке листов сплава 1460 толщиной 2,5 мм. Склонность к образованию горячих трещин при сварке определялась по методике МВТУ им. Н.Э. Баумана на установке ЛТПI-6 с принудительной поперечной растягивающей деформацией образцов в процессе сварки, которая проводилась с присадочной проволокой по режиму: Jсв=140 А. Аргоно-дуговую сварку образцов для механических испытаний проводили на автомате АДСВ-7 с исследуемыми присадочными материалами. Режим сварки: Jсв= 140 А, Vсв= 18 м/ч. Для сравнения аналогичные испытания были проведены для сплава-прототипа, который испытывался как основной и присадочный материал.

Пластичность самого сплава оценивалась по величине относительного удлинения (%), которое определялось на листовом материале, полученном по следующей технологии. Из слитка 70 мм после гомогенизирующего отжига прессовалась полоса сечением 40 15 мм при 440oС, затем она прокатывалась при 400oС в поперечном направлении. Листы закаливались с температуры 535oС в воду, затем после правки подвергали старению при 180oС в течение 20 ч.

В таблице 2 приведены механические свойства сварных соединений. Как видно из полученных данных, применение заявляемого состава в качестве присадочного материала позволяет повысить трещиностойкость, ударную вязкость и пластичность сварного соединения сплава 1460 примерно на 40-60%. Пластичность заявляемого сплава также повышается.

Применение предлагаемого сплава к качестве присадочного материала позволит использовать новые сверхлегкие алюминиевые сплавы системы Al-Сu-Li в сварных конструкциях авиакосмической техники, повысить их эксплуатационную надежность и снизить вес изделия примерно на 15%.

Литература
1. OCT 1-90048-90 "Сплавы алюминиевые деформируемые. Марки.
2. Патент РФ 1678080, С 22 С 21/12.


Формула изобретения

1. Сплав на основе алюминия, содержащий медь, марганец, титан, цирконий, отличающийся тем, что в него дополнительно введены скандий и по крайней мере три компонента, выбранных из группы, содержащей бор, бериллий, лантан, иттрий, церий, при следующем соотношении компонентов, мас. %:
Медь - 6,0-8,5
Марганец - 0,1-0,4
Титан - 0,05-0,2
Цирконий - 0,08-0,25
Скандий - 0,1-0,4
и по крайней мере три компонента, выбранных из группы, содержащей
Бор - 0,0005-0,005
Бериллий - 0,0001-0,001
Лантан - 0,05-0,2
Иттрий - 0,05-0,15
Церий - 0,05-0,15
Алюминий - Остальное
2. Изделие из сплава на основе алюминия, отличающееся тем, что оно выполнено из сплава следующего химического состава, мас. %:
Медь - 6,0-8,5
Марганец - 0,1-0,4
Титан - 0,05-0,2
Цирконий - 0,08-0,25
Скандий - 0,1-0,4
и по крайней мере три компонента, выбранных из группы, содержащей
Бор - 0,0005-0,005
Бериллий - 0,0001-0,001
Лантан - 0,05-0,2
Иттрий - 0,05-0,15
Церий - 0,05-0,15
Алюминий - Остальное

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к высокопрочным деформируемым термически упрочняемым свариваемым сплавам на основе алюминия, в частности системы Al - Cu - Li, используемым в качестве конструкционных материалов в изделиях авиакосмической техники, таких как сварные топливные баки для работы при температуре от +20°С до -253°С, различные элементы силового набора и обшивки фюзеляжа и крыла, как сжатой, так и в растянутой зоне самолетных конструкций, работающих при температуре от +175°С до -70°С

Изобретение относится к области металлургии, в частности к многокомпонентным сплавам на основе алюминия

Изобретение относится к области цветной металлургии, а именно к получению сплавов на основе алюминия, предназначенных для изготовления штамповок сложной формы, в частности штамповок дисков автомобильных колес

Изобретение относится к цветной металлургии, в частности к сплавам на основе алюминия, предназначенным для изготовления монометаллических подшипников скольжения, работающих в условиях жидкостного и граничного трения, например, объемных гидромашинах
Изобретение относится к металлургии, в частности к литейным алюминиевым сплавам и способам их термообработки

Изобретение относится к легким материалам для применения в авиационно-космической технике и других отраслях народного хозяйства

Изобретение относится к области металлургии, в частности к высокопрочным свариваемым сплавам пониженной плотности системы алюминий - медь - литий, и может быть использовано в авиакосмической технике

Изобретение относится к порошковой металлургии и может быть использовано в приборостроении для изготовления слабонагруженных и ненагруженных деталей, например радиаторов охлаждения полупроводниковых приборов, подошвы электрического утюга и др., а также в качестве электроконтактного материала

Изобретение относится к области металлургии сплавов на основе алюминия, в частности сплавов системы AL-Li-Mg-Be, используемых в качестве конструкционного материала для панелей, стрингеров и других деталей в авиакосмической технике, судостроении и наземном транспортном машиностроении, в том числе и в сварных конструкциях

Изобретение относится к области металлургии алюминиевых сплавов

Изобретение относится к металлургии, в частности к сплавам на основе алюминия системы Al-Mn, для производства тонких холоднокатаных листов, используемых для последующей холодной формовки в изделиях сложной формы, таких как сосуды, емкости, банки и др., в том числе сварные конструкции

Изобретение относится к получению квазикристаллических сплавов, в частности, к получению квазикристаллического однофазного сплава системы Al-Cu-Fe в виде порошка
Изобретение относится к металлургии литейных сплавов на основе алюминия, предназначенных для применения в качестве высоконагруженных конструкционных материалов при производстве литых деталей в различных изделиях машиностроения
Изобретение относится к области металлургии сплавов, в частности к деформируемым термически неупрочняемым свариваемым сплавам на основе системы Al-Mn

Изобретение относится к металлургии, в частности к деформируемым сплавам на основе алюминия, и может быть использовано при получении изделий, работающих в широком диапазоне температур, до 350°С
Наверх