Способ получения нитратов щелочноземельных металлов

 

Изобретение относится к области неорганической химии, в частности к синтезу нитратов щелочноземельных элементов, которые имеют широкое применение в различных сферах деятельности человека. Сущность способа получения нитратов щелочноземельных металлов состоит во взаимодействии эквивалентных количеств гидроксида щелочноземельного металла и нитрата аммония, при этом исходную смесь измельчают, гомогенизируют и проводят реакцию в печи шахтного типа при 150oС при постоянном перемешивании. Технический результат заключается в получении безводного нитрата щелочноземельного металла, не содержащего примесей, упрощении технологии и повышении выхода продукта на 5-24%.

Изобретение относится к области неорганической химии, в частности к синтезу нитратов щелочноземельных элементов, которые имеют широкое применение в различных сферах деятельности человека: нитраты щелочноземельных металлов используют как компоненты эмалей и глазурей, для изготовления пиротехнических составов (Ва(NО3)2-пламя зеленого цвета; Са(NO)3)2 и Sr(NO)3)2-пламя красного и малинового цветов), для получения других соединений щелочноземельных металлов (например, Ва(NО3)2 применяют для получения ВаО и Ва2O2).

Известен способ получения нитрата кальция, включающий взаимодействие сплава аммиачной селитры с известняком (Позин М.Е. Технология минеральных солей. Т.П.Л.: Химия. 1970, с. 1205).

Однако он используется для получения смеси Са(NО3)2 и NH4NO3.

Известен способ получения нитрата кальция из нитрозных газов по реакциям: Ca(OH)2+NO+NО2-->Ca(NО2)2+H2О (1) 2Ca(OH)2+4NО2-->Ca(NО3)2+Ca(NО2)2+2H2О (2) Образовавшийся нитрит кальция переводится в нитрат (Позин М.Е. Технология минеральных солей. Т.П.Л.: Химия. 1970, с. 1213): 3Ca(NO2)2+4HNО3-->3Ca(NО3)2+4NO+2H2О (3) Однако указанный выше процесс довольно сложен и в нем в качестве примеси образуется аммиачная селитра (после нейтрализации избытка азотной кислоты в реакции 3).

Также известен способ получения нитрата бария конверсией солей бария (Позин М.Е. Технология минеральных солей. Т.П.Л.: Химия. 1970, с.452-453): BaCl2+2NH43-->Ba(NO3)2+2NH4Cl Однако и этот способ имеет ряд недостатков, так как при сливании насыщенных растворов ВаСl2 и 2NH4NO3 при 25oС кристаллизуется только 65% Ва(NО3)2, а если выпаривать раствор, то выход Ba(NO3)2 составит всего 73%.

Нитраты щелочноземельных металлов получают взаимодействием в растворах гидрооксидов щелочноземельных металлов и нитрата аммония (Ахметов Т.Г. и др. Химическая технология неорганических веществ. М.: Химия. 1998, с. 102).

Однако в этом способе сложная технология получения нитратов, включающая подготовку растворов исходных веществ, проведение реакции обмена, фильтрацию и упаривание растворов, а также низкий выход щелочноземельных нитратов вследствие потерь в процессе получения.

Настоящее изобретение решает задачу разработки нового способа получения безводных нитратов щелочноземельных металлов при низких температурах.

Новизна заявленного способа заключается в том, что для получения чистых безводных нитратов используется реакционная смесь, включающая взаимодействие измельченных и гомогенизированных безводных гидроксидов щелочноземельных металлов и нитрата аммония при 150oС и постоянном перемешивании.

Предложенный способ реализуется следующим образом.

Взвешивают безводные гидроксиды щелочноземельных металлов в боксе в атмосфере, не содержащей СО2 и Н2O, измельчают, смешивают в эквивалентных количествах, перетирают: 1. 0,3165 г Са(ОН)2+0,6835 г NH4NO3 Температура реакции смеси равна 150oС, время реакции 10 мин.

2. 0,4319 г Sr(OH)2+0,5681 г NH4NO3
Температура реакции смеси равна 150oС, время реакции 10 мин.

3. 0,5171 г Ва(ОН)2+0,4829г NH4NO3
Температура реакции смеси равна 150oС, время реакции 10 мин.

Реакции проводят в печи шахтного типа при постоянном перемешивании. При этом получается нитрат щелочноземельного металла и, в качестве побочного продукта, гидроксид аммония, который разлагается на аммиак и воду, возгоняющиеся из продуктов реакции.

Выход нитратов составляет:
97,65% для Ca(NO3)2; 95,0% для Sr(NО3)2; 93,51% для Ва(NО3)2.

Контроль нитратов проведен по температурам плавления методом дифференциального термического анализа и показал, что они соответствуют справочным данным. Кроме того, рентгенофазовый анализ показал индивидуальность полученных веществ.

Заявленный способ имеет существенные преимущества по сравнению с известными:
1. Получается безводный нитрат щелочноземельного металла, не содержащий примесей.

2. Простота технологии синтеза.

3. Высокий выход продукта - 5-24% выше, чем в известных способах.


Формула изобретения

Способ получения нитратов щелочноземельных металлов взаимодействием эквивалентных количеств гидроксида щелочноземельного металла и нитрата аммония, отличающийся тем, что исходную смесь измельчают, гомогенизируют и проводят реакцию в печи шахтного типа при 150oС при постоянном перемешивании.



 

Похожие патенты:
Изобретение относится к области прикладной химии, в частности к способам получения комплексных нитратов кальция и магния, связанных карбамидом, находящих различное применение, основным из которых является использование их для удаления гололеда на взлетно-посадочных полосах аэродромов, а также шоссейных дорог, тротуаров и в других областях народного хозяйства
Изобретение относится к области получения концентратов фосфатирования, применяемых в автомобильной, машиностроительной, приборостроительной и других промышленностях для фосфатирования углеродистых сталей перед анодным и катодным электроосаждением, а также для фосфатирования углеродистых и низколегированных сталей без предварительной механической очистки

Изобретение относится к области химической технологии и касается, в частности, способов утилизации промышленных отходов; может быть использовано в химической промышленности
Изобретение относится к способу получения раствора азотнокислого цинка из отходов, содержащих цинк, и может быть использовано в химической технологии переработки цинксодержащего сырья, в частности отхода металлургического производства изгари цинка
Изобретение относится к производству минеральных удобрений и касается получения аммиачной селитры под давлением, а именно стадии использования энергии сокового пара, получаемого при нейтрализации кислоты

Изобретение относится к получению солей никеля высокой чистоты и может быть использовано в аналитической химии и гальванотехнике

Изобретение относится к химической технологии, в частности к способу растворения меди в азотной кислоте, и может быть использовано в производстве катализаторов, эмалированных изделий, в лабораторной практике

Изобретение относится к гидрометаллургии черных и цветных металлов, может быть использовано для очистки от железа производственных растворов с высоким фоном азотно-кислых солей и позволяет повысить производительность фильтрования при сохранении высокой степени очистки

Изобретение относится к способам растворения металлической меди и может быть использовано для переработки вторичных отходов, например электронного лома, омедненных отходов металлических циркония и гафния, отходов сверхпроводниковых материалов в медной оболочке
Изобретение относится к неорганической химии, в частности к способу получения азотнокислых солей урана и актинидов, и предлагает альтернативный путь преобразования исходных материалов, содержащих оксиды урана и других ядерных материалов в гидратированные нитраты, т.е
Изобретение может быть использовано в химической промышленности и в области производства взрывчатых веществ. Способ получения водоустойчивого нитрата аммония включает одновременное измельчение и перемешивание нитрата аммония со смесью гидрофобизаторов, содержащих оксид железа (III) в количестве не менее 0,03% и соли стеариновой кислоты не менее 0,1% от массы продукта, и сушку. Гидрофобизатор содержит в качестве солей стеариновой кислоты стеарат лития, или стеарат магния, или их смесь. Дополнительно гидрофобизатор содержит олеаты металлов IIA группы или их смеси, взятые в количестве 0,1-1,0% от массы продукта при соотношении солей стеариновой кислоты к олеатам металлов IIA группы, равном 1:1. Изобретение позволяет получить нитрат аммония повышенной водоустойчивости. 1 табл.

Изобретение относится к технологии переработки химических концентратов природного урана. Способ получения нитрата уранила включает обработку водным раствором нитрата аммония соединений урана таких как: оксиды урана, полиуранаты натрия, полиуранаты аммония или пероксид урана, и спекание полученных смесей в интервале температур 200-350°C. Изобретение обеспечивает увеличение выхода нитрата уранила и снижение взрывоопасности процесса. 2 з.п. ф-лы, 1 ил., 1 табл., 1 пр.

Изобретение относится к приготовлению анион-дефицитных метастабильных растворов нитрата уранила и может быть использовано в химической технологии, в частности, при импрегнировании урана в пористые графитовые заготовки с целью получения уран-графитовых тепловыделяющих элементов (твэл) или при получении микросфер золь-гель методом. Способ включает смешивание оксида урана с водой в соотношении жидкого к твердому 0,1÷0,15, подачу в полученную пульпу при постоянном перемешивании азотной кислоты, которую вводят по каплям при мольном отношении нитрат-иона к металлу в растворе 1,6÷1,95, фильтрование полученного раствора и корректировку раствора сначала по плотности, а затем по водородному показателю при температуре не более 12°C путем добавления уротропина. Изобретение обеспечивает эффективное получение анион-дефицитных метастабильных растворов нитрата уранила с заданными характеристиками. 4 з.п. ф-лы, 4 пр.

Изобретение относится к способу получения нитрата аммония, объединяющему получение азотной кислоты с получением нитрата аммония. Газообразный сырьевой материал установки окисления, состоящий из аммиака, водяного пара и окисляющего газа, подвергают воздействию условий, при которых аммиак окисляется с образованием реакционной смеси, содержащей монооксид азота и водяной пар. Затем реакционную смесь охлаждают в теплообменнике, в результате чего монооксид азота окисляется, водяной пар конденсируется, а продукты окисления монооксида азота реагируют с конденсированной водой и абсорбируются ею с образованием потока азотной кислоты. Поток азотной кислоты реагирует с потоком аммиака на стадии получения нитрата аммония с образованием нитрата аммония. По меньшей мере 80% пара в составе сырьевого материала установки окисления происходит со стадии получения нитрата аммония. По меньшей мере 10% аммиака в составе сырьевого материала установки окисления происходит и доставляется паром со стадии получения нитрата аммония. Изобретение обеспечивает уменьшение размера реактора для получения нитрата аммония и снижение требования к точности перемешивания для реакции азотной кислоты. 20 з.п. ф-лы, 4 ил.

Изобретение относится к переработке минеральных отходов химических производств. Для извлечения сульфата натрия и нитратов металлов из водных растворов сульфата натрия, содержащего в качестве примесей нитрат натрия и нитрит натрия, осуществляют взаимодействие растворов с бисульфатом натрия или концентрированной серной кислотой. В исходный раствор на 1 моль нитрита натрия и нитрата натрия вводят 1 моль бисульфата натрия или 0,5 моль серной кислоты. Сульфат натрия выделяют путем выпаривания воды. Влажную смесь солей сушат. Сухой остаток нагревают в течение не менее 15 минут при температуре 140-200°C. Газообразные продукты реакции улавливают водными растворами гидроксидов или карбонатов щелочных или щелочноземельных металлов. Из полученного раствора выделяют нитраты металлов. В качестве гидроксидов металлов используют гидроксид натрия, или калия, или кальция, а в качестве карбонатов металлов - карбонат натрия или калия. Изобретение позволяет обеспечить получение товарных очищенных сульфата натрия и нитратов металлов с содержанием основного вещества не менее 99,0%. 2 з.п. ф-лы, 1 пр., 1 табл.
Наверх