Геттерный насос квантового водородного генератора

 

Насос предназначен для использования при изготовлении квантовых водородных генераторов. Геттерный насос для квантового водородного генератора содержит в качестве сорбента (поглотителя) прессованную тонкую титановую стружку, в которую добавлен сплав лантан-никеля 5 (LaNi5) в количестве 10-15% от массы титановой стружки. Повышается эффективность и надежность эксплуатации квантового генератора. 1 з.п. ф-лы.

Изобретение относится к вакуумной технике, а именно к сорбционным (геттерным) насосам, и может быть использовано в вакуумных системах водородных стандартов частоты.

В квантовом водородном генераторе формируется пучок атомов водорода, который подвергается сортировке по состояниям и одновременной фокусировке с помощью сортирующей системы ("Стандарты частоты и времени на основе квантовых генераторов и дискриминаторов" под ред. Б.П. Фатеева, М., изд. "Сов. Радио", с. 70). Основными элементами квантового водородного генератора являются источник атомарного водорода, магнитная сортирующая система, резонатор с накопительной колбой и магнитными экранами, вакуумная система. Наиболее высокие требования предъявляются к откачке накопительной колбы, то есть к вакуумной системе. В накопительной колбе обеспечивается давление не более (1-3)10-6 Па, в резонаторе 1,310-4 Па, в источнике 1,310 Па. Поток рабочих атомов водорода составляет 3,310-6м3 Па/с. Для обеспечения требуемого давления в накопительной колбе (1-3)10-6 Па скорость откачки насоса должна быть не менее (1-3) м3/с. При приемлемых габаритах такую скорость откачки может обеспечить только сорбционный насос.

Откачивающими средствами для создания вакуума в камерах являются магниторазрядные и сорбционный (геттерный) насосы, как например в водородном стандарте частоты и времени типа Ч1-75, взятом в качестве прототипа предлагаемого изобретения (см. "Кварцевые и квантовые меры частоты" под ред. Макаренко Б. И., М., Мин.обороны СССР, 1989 г., с. 358, рис.6.13б). Сорбционные (геттерные) насосы были созданы с целью уменьшения габаритов вакуумной системы и повышения эксплуатационных характеристик квантовых генераторов. Такие насосы после их активации в высоком вакууме при температуре 700-800oС способны поглощать в большом количестве водород. В качестве сорбента в них используются прессованная тонкая титановая стружка или фольга. Такие насосы занимают небольшой объем и не потребляют при работе энергии. Но недостатком таких конструкций является то, что титан, обладая высокой энергией связи с водородом, медленно поглощает водород, что снижает скорость сорбции. В то же время скорость сорбции должна превышать скорость потока атомов водорода для обеспечения требуемого давления в накопительной колбе. Для решения этой задачи можно увеличить поверхность титановой стружки, но это приводит к увеличению плотности сорбционной поверхности и затруднению проникновения водорода.

Технической задачей изобретения является повышение скорости сорбции водорода геттерным насосом для эффективной и надежной эксплуатации квантовых водородных генераторов.

Решение технической задачи заключается в том, что в геттерном насосе для квантового водородного генератора, содержащем в качестве сорбента прессованную тонкую титановую стружку, в стружку добавляется интерметаллид сплав лантан-никеля 5 (LaNi5).

Сплав лантан-никеля составляет 10-15% от массы титановой стружки.

Геттерный насос конструктивно, так же как и прототип, разделен на две секции - верхнюю и нижнюю. Секции сообщаются между собой пролетным каналом сортирующего магнита. Верхняя секция содержит около 300 г, а нижняя секция около 700 г геттера: прессованной стружки титана и порошка LaNi5. На разделительной перегородке секций смонтирован нагреватель для активации геттера путем нагрева до температуры около 800oС в высоком вакууме (Р <110-5 Па).

Процесс выполнения геттерного поглотителя состоит в следующем. Из титановой заготовки делается стружка толщиной 0,05 мм и шириной 0,5 мм. Стружка предварительно прессуется в виде таблеток, затем на их верхнюю и нижнюю поверхности наносится мелкодисперсный порошок сплава LaNi5 в количестве 10-15% от массы титановой стружки, и производят окончательное прессование гидропрессом до необходимых размеров и отжиг в вакууме при температуре 850oС. Сплав LaNi5 обладает высокой скоростью сорбции водорода и относительно низкой энергией связи с водородом, поэтому сплав LaNi5 захватывает водород и быстро "отдает" его титану, увеличивая скорость сорбции геттерного насоса для водорода.

Изобретение может быть использовано при изготовлении геттерных насосов для квантовых водородных генераторов для использования их в водородных стандартах частоты при работе их в качестве источников высокостабильных сигналов.

Формула изобретения

1. Геттерный насос квантового водородного генератора, содержащий в качестве сорбента прессованную тонкую титановую структуру, отличающийся тем, что в прессованную титановую стружку добавлен сплав лантан-никеля 5.

2. Геттерный насос по п.1, отличающийся тем, что сплав лантан-никеля 5 составляет 10-15% от массы титановой стружки.



 

Похожие патенты:

Изобретение относится к устройствам, применяемым к системе регенерации абсорбента для осушки природного газа, и может быть использовано в других отраслях промышленности, где по технологии используется постоянный вакуум

Изобретение относится к вакуумной технике, а именно для получения сверхвысокого вакуума

Изобретение относится к конструкции вакуумных установок

Изобретение относится к вакуумной технике и позволяет повысить экономичность при циклическом режиме работы системы , При разгерметизированной рабочей камере (К) 1 осуществляется вакуумирование расширительной К 5 В этот момент вентиль (В) 3 закрыт, В 6 открыт, а насос (Н) 4 включен

Изобретение относится к насосостроению и может быть использовано в поршневых на|сосах для перекачки газов, в частности в вакуум-насосах

Изобретение относится к вакуумной технике и позволяет повысить экономичность процесса обезгаживания изделий в вакууме

Изобретение относится к вакуумной технике и позволяет повысить использование светового потока
Изобретение относится к способам вакуумирования гермообъемов и преимущественно может быть использовано в холодильной, морозильной технике и устройствах кондиционирования и осушения воздуха с использованием термоэлектрических модулей на эффекте Пельтье, а также в измерительной технике, радиоэлектронной аппаратуре электровакуумных приборах и т.д

Изобретение относится к системам ультравысокого вакуума для обработки полупроводникового изделия, к геттерным насосам, используемым в них, и к способу обработки полупроводникового изделия

Изобретение относится к вакуумной и криогенной технике и может быть использовано как в вакуумных насосах для получения глубокого вакуума, так и в рефрижераторах криосорбционной откачки рабочего тела, в частности для откачки 3He в рефрижераторах растворения

Изобретение относится к вакуумной технике, а именно к криоадсорбционным вакуумным насосам

Изобретение относится к вакуумной технике, а именно к способам эксплуатации адсорбционных устройств

Изобретение относится к криогенной технике, а именно к адсорбционным насосам, предназначенным для поддержания вакуума путем поглощения молекул газа из замкнутых объемов
Наверх