Способ получения холода и тепла в экологически чистой газовой холодильной установке и увеличения холодильного и отопительного коэффициентов

 

Изобретение предназначено для использования в области энергетики, транспорта, авиации и космонавтики, где необходимо получение холода и тепла. В способе получения холода и тепла в экологически чистой газовой холодильной установке путем многоступенчатых расширения, нагрева, сжатия и охлаждения хладагента основного обратного теплового цикла (ОТЦ), работающего по замкнутой схеме, и получения дополнительного холода с помощью вспомогательного ОТЦ, работающего по замкнутой или разомкнутой схеме, необходимую в основном цикле работу обеспечивают работой турбины-детандера вспомогательного ОТЦ, ступенчатый нагрев хладагента основного ОТЦ между ступенями расширения производят отводом тепла от холодного источника, а ступенчатое охлаждение хладагента между ступенями сжатия основного ОТЦ производят частичным отводом тепла к горячему источнику и частично при температурах ниже температуры горячего источника отводом тепла от хладагента основного ОТЦ к хладагенту вспомогательного ОТЦ за счет полученного дополнительного холода во вспомогательном цикле. При двухступенчатом расширении и сжатии холодильный коэффициент в первом приближении увеличивается с исх= q2исх/1ц исх до и соответственно увеличивается отопительный коэффициент при трехступенчатом расширении и сжатии холодильный коэффициент увеличивается с исх= q2 исх/1ц исх до и соответственно увеличивается отопительный коэффициент Указанные коэффициенты увеличиваются с ростом величины n. 2 з.п.ф-лы, 4 ил.

Изобретение предназначено для использования в области энергетики, транспорта, авиации и космонавтики, где необходимы холод и тепло.

Известен способ получения холода с помощью холодильных установок, работающих по обратному тепловому циклу. В обратном цикле работа сжатия Lk превышает работу расширения Lт и за счет подведенной работы Lц из холодного источника отбирается тепло Q2, а горячему источнику отдается тепло Ql (соответственно на 1 кг рабочего тела lk,lт,1ц,q2,q1). Работа Lц подводится от какого-либо внешнего двигателя. Для характеристики эффективности холодильной установки применяется так называемый холодильный коэффициент , определяемый следующим образом: = q2/lц, а отопительный коэффициент отоп= +1 (см. Кириллин В.А., Сычев В.В., Шейндлин А. Е. Техническая термодинамика. - М.: Энергия, 1974, с. 370-371, 392).

- Общими недостатками холодильных установок являются: -низкие значения холодильных, отопительных коэффициентов; - токсичность хладагентов; - нарушение экологии среды и др.

Известен способ получения холода и тепла с помощью газовой (воздушной) холодильной установки. Цикл этой холодильной установки в Т, s=диаграмме представлен на фиг.4. Хладагент - газ (воздух) - расширяется в детандере от давления p1 до давления р2, совершая работу, отдаваемую детандером внешнему потребителю (например, производя электроэнергию с помощью соединенного с детандером электрогенератора). Воздух, охлаждаемый в результате процесса адиабатного расширения в детандере от температуры Tl до температуры Т2, поступает в охлаждаемый объем, из которого он отбирает тепло. Процесс передачи тепла от охлаждаемого объема к воздуху происходит при постоянном давлении воздуха (р2=const). Отвод тепла из охлаждаемого объема возможен только в том случае, если температура воздуха в течение всего изобарного процесса отбора тепла будет меньше, чем температура охлаждаемого объема. В принципе температура воздуха на выходе из охлаждаемого объема Т3 может сравняться с температурой охлаждаемых тел, но на практике она всегда ниже этой температуры.

Из охлаждаемого объема воздух направляется в компрессор (турбокомпрессор), где его давление повышается от р2 до p1 (при этом температура воздуха возрастает от Т3 до Т4). Сжатый компрессором воздух поступает в охладитель-теплообменник. Процесс в охладителе происходит при постоянном давлении воздуха (p1=const).

Недостатком газовой (воздушной) холодильной установки является весьма значительное отличие холодильного коэффициента от обратного цикла Карно. Это определяется тем, что процессы отбора тепла из охлаждаемого объема и отдачи воздухом тепла в охладителе осуществляются не по изотерме, а по изобаре. Холодильный цикл становится теоретически более эффективным в случае меньшего переохлаждения воздуха, выходящего из детандера, по сравнению с охлаждаемым объемом.

Переохлаждение воздуха, выходящего из детандера, зависит от степени понижения давления в турбине-детандере, и чем меньше степень понижения давления, тем теоретически выше эффективность холодильного цикла. Но в этом случае уменьшается хладопроизводительность и для обеспечения ее на прежнем уровне необходимо увеличивать расход воздуха в контуре установки. Кроме этого на "узкий" цикл оказывает значительно большее влияние необратимость реальных процессов аднабатного сжатия и расширения в реальной установке (см. Кириллин В. А. , Сычев В.В., Шейндлин А.Е. Техническая термодинамика. - М.: Энергия, 1974, с. 373-374).

Известен способ работы турбохолодильной машины (см. SU 524051, кл. F 25 В 11/00, 11.11.1977 г.) путем сжатия в компрессоре воздуха, который затем охлаждают в двух последовательно установленных теплообменниках и расширяют в двух ступенях турбины (детандера).

Недостатком данного способа работы турбохолодильной машины является недостаточно высокая эффективность.

Из известных способов получения холода наиболее близким является способ получения холода и тепла в экологически чистой газовой холодильной установке путем многоступенчатых расширения, нагрева, сжатия, и охлаждения хладагента первого обратного теплового цикла (ОТЦ), работающего по замкнутой схеме, и получения дополнительного холода с помощью второго ОТЦ, работающего по замкнутой или разомкнутой схеме (см. US 4777805 А, кл. F 25 В 7/00,18.10.1988).

Недостатком этого способа является недостаточная эффективность при достаточно больших температурных зонах охлаждения и нагрева вследствие сильного возрастания необратимых тепловых потерь и снижения из-за этого термодинамической эффективности рабочего цикла установки.

Техническим результатом, на который направлено настоящее изобретение, является получение дополнительного холода и тепла и увеличение холодильного и отопительного коэффициентов в экологически чистых газовых холодильных установках, которые могут работать с любым газообразным рабочим телом. Кроме того, решается задача уменьшения переохлаждения воздуха и соответствующего увеличения расхода воздуха.

При двухступенчатом расширении и сжатии холодильный коэффициент в первом приближении увеличивается с исх= q2 исх/lц исх до и соответственно увеличивается отопительный коэффициент при трехступенчатом расширении и сжатии холодильный коэффициент увеличивается с исх= q2 исх/lц исх до и соответственно увеличивается отопительный коэффициент и эти коэффициенты увеличиваются с ростом величины n, а для многоступенчатого охлаждения используется дополнительный холод, полученный во вспомогательном цикле.

Технический результат достигается тем, что в способе получения холода и тепла в экологически чистой газовой холодильной установке путем многоступенчатых расширения, нагрева, сжатия и охлаждения хладагента используется суммарный ОТЦ, состоящий из основного ОТЦ, работающего по замкнутой схеме, и вспомогательного ОТЦ, работающего по замкнутой или разомкнутой схеме, получения дополнительного холода с помощью вспомогательного ОТЦ, необходимую в основном цикле работу обеспечивают работой турбины-детандера вспомогательного ОТЦ, ступенчатый нагрев хладагента основного ОТЦ между ступенями расширения производят отводом тепла от холодного источника, а ступенчатое охлаждение хладагента между ступенями сжатия основного ОТЦ производят частичным отводом тепла к горячему источнику и частично при температурах ниже температуры горячего источника отводом тепла от хладагента основного ОТЦ к хладагенту вспомогательного ОТЦ за счет полученного дополнительного холода во вспомогательном цикле.

Технический результат достигается также тем, что в качестве хладагента основного и вспомогательного ОТЦ используют один и тот же хладагент.

Технический результат достигается также тем, что при заданных температурах горячего и холодного источников и при заданных степенях сжатия и расширения для повышения или понижения расхода хладагента в основном и вспомогательном ОТЦ соответственно повышают или понижают давление хладагента.

На фиг. 1 приведена принципиальная схема установки для осуществления предлагаемого способа.

На фиг.2 приведена TS диаграмма двухступенчатого цикла получения тепла и холода по предлагаемому способу.

На фиг.3 приведена TS диаграмма трехступенчатого цикла получения тепла и холода по предлагаемому способу.

На фиг.4 приведена TS диаграмма известного цикла получения холода.

Установка для получения холода содержит последовательно соединенные первую ступень компрессора 1, теплообменник 2, вторую ступень компрессора 3, теплообменник 4, первую ступень турбины 5, теплообменник 6, вторую ступень турбины 7 и теплообменник 8 основного ОТЦ. Валы ступеней компрессора и турбины объединены и соединены с валом турбины-детандера 9 вспомогательного ОТЦ, включающего также компрессор 10 и два теплообменника 11 и 12. Возможно применение также и разомкнутого вспомогательного цикла. Теплообменники 6 и 8 расположены в охлаждаемом объеме 13, а теплообменники 2 и 4 расположены в нагреваемом объеме 14.

Способ получения холода осуществляется следующим образом.

При двухступенчатом процессе сжатия, охлаждения (см. фиг.2) хладагент основного ОТЦ расширяется (адиабата a1-3) в первом детандере (в первой турбине) 5 от давления Pal(Pal=4) до давления Р33=2), совершая работу, отдаваемую детандером на вал компрессоров основного ОТЦ.

Хладагент основного ОТЦ, охлажденный в результате адиабатного расширения в детандере 5 (адиабата al-3), поступает в теплообменник 6 охлаждаемого объема 13, из которого он отбирает тепло (изобара 3-е).

Хладагент основного ОТЦ расширяется (адиабата е-r) во втором детандере (во второй турбине) 7 от давления Рee=2) до давления Рr (Рr=1), совершая работу, отдаваемую детандером на вал компрессоров основного ОТЦ.

Хладагент основного ОТЦ, охлажденный в результате адиабатного расширения в детандере 7 (адиабата е-r), поступает в теплообменник 8 охлаждаемого объема 13, из которого он отбирает тепло (изобара r-а3).

Хладагент основного ОТЦ с температурой, соответствующей точке а3, сжимается (адиабата а3-д) в первом компрессоре 1 от давления Ра3 (Pа3=1) до давления Рдд=2). Работу компрессор получает от детандеров 5 и 7.

Хладагент основного ОТЦ, нагретый в результате адиабатного сжатия в компрессоре 1 (адиабата а3-д), поступает в теплообменники 2 и 12 и охлаждается (изобара д-е), отдавая тепло частично горячему источнику (теплообменник 2) и частично хладагенту, охлажденному в результате адиабатного расширения, вспомогательного ОТЦ (теплообменник 12).

Хладагент основного ОТЦ с температурой, соответствующей точке е, сжимается (адиабата е-ж) во втором компрессоре 3 от давления Ре (Pе=2) до давления Ржж=4). Работу компрессор получает от детандеров 5 и 7, а недостающую работу получает от детандера 9 вспомогательного ОТЦ.

Хладагент основного ОТЦ, нагретый в результате адиабатного сжатия в компрессоре 3 (адиабата е-ж), поступает в теплообменник 4 и охлаждается (изобара ж-аl), отдавая тепло горячему источнику.

Диаграмма цикла при трехступенчатых процессах сжатия, охлаждения, расширения и нагрева изображена на фиг.3. Порядок операций при трехступенчатом процессе аналогичен.

Диаграмма цикла вспомогательного ОТЦ изображена на фиг.4.

Электромотор (тепловой двигатель) 15 приводит в действие компрессор 10, используемый во вспомогательном ОТЦ.

Хладагент вспомогательного ОТЦ сжимается от давления Р33=1) до давления Р4(P4= 2) для создания к всп= P4/P3= т всп, необходимого для получения работы 1т всп=1ц осн.

Хладагент вспомогательного ОТЦ, нагретый в результате адиабатного сжатия в компрессоре 10 (адиабата 3-4), поступает в теплообменник 11 и охлаждается, отдавая тепло горячему источнику вспомогательного ОТЦ (изобара 4-1).

Хладагент вспомогательного ОТЦ, охлажденный в теплообменнике 11 до температуры Tl, расширяется в детандере (турбине) 9 от давления Pl (Pl=2) до давления P2(P2= 1) (адиабата 1-2) и охлаждается до температуры Т2, совершая работу, равную 1ц осн(lт всп=1ц осн), и отдавая ее на вал компрессора основного ОТЦ.

Хладагент вспомогательного ОТЦ, охлажденный в результате адиабатного расширения в детандере 9 (адиабата 1-2), поступает в теплообменник 12 и отбирает тепло (изобара 2-3) у хладагента основного ОТЦ (изобара д-е).

В результате осуществления способа получения холода и тепла в экологически чистой газовой холодильной установке при двухступенчатом расширении и сжатии холодильный коэффициент в первом приближении увеличивается с исх= q2 исх/lц исх до и соответственно увеличивается отопительный коэффициент при трехступенчатом расширении и сжатии холодильный коэффициент увеличивается с исх= q2 исх/lц исх до и соответственно увеличивается отопительный коэффициент Указанные коэффициенты увеличиваются с ростом величины n.

Способ может использоваться и в паровых холодильных установках.

Формула изобретения

1. Способ получения холода и тепла в экологически чистой газовой холодильной установке путем многоступенчатых расширения, нагрева, сжатия и охлаждения хладагента первого обратного теплового цикла (ОТЦ), работающего по замкнутой схеме и получения дополнительного холода с помощью второго ОТЦ, работающего по замкнутой или разомкнутой схеме, отличающийся тем, что используется суммарный ОТЦ, состоящий из основного ОТЦ, работающего по замкнутой схеме и вспомогательного ОТЦ, работающего по замкнутой или разомкнутой схеме, получение дополнительного холода с помощью вспомогательного ОТЦ, необходимую в основном цикле работы обеспечивают работой турбины-детандера вспомогательного ОТЦ, ступенчатый нагрев хладагента основного ОТЦ между ступенями расширения производят отводом тепла от холодного источника, а ступенчатое охлаждение хладагента между ступенями сжатия основного ОТЦ производят частичным отводом тепла к горячему источнику и частично, при температурах ниже температуры горячего источника, отводом тепла от хладагента основного ОТЦ к хладагенту вспомогательного ОТЦ за счет полученного дополнительного холода во вспомогательном цикле.

2. Способ по п.1, отличающийся тем, что в качестве хладагента основного и вспомогательного ОТЦ используют один и тот же хладагент.

3. Способ по п.1, отличающийся тем, что при заданных температурах горячего и холодного источников и при заданных степенях сжатия и расширения для повышения или понижения расхода хладагента в основном и вспомогательном ОТЦ соответственно повышают или понижают давление хладагента.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4

NF4A Восстановление действия патента СССР или патента Российской Федерации на изобретение

Дата, с которой действие патента восстановлено: 10.09.2010

Извещение опубликовано: 10.09.2010        БИ: 25/2010




 

Похожие патенты:

Изобретение относится к холодильной технике, в частности к каскадным холодильным установкам, входящим в состав испытательных термокамер

Изобретение относится к холодильной технике и позволяет повысить экономичность каскадных холодильных установок

Изобретение относится к холодильной технике и позволяет повысить холодопроизводительность системы охлаждения путем повышения термодинамической эффективности охлаждения

Изобретение относится к холодильной установке, имеющей замкнутый циркуляционный цикл и заполненной холодильным агентом, предназначенным для теплопередачи, причем этот холодильный агент при атмосферном давлении имеет давление насыщения, которое выше, чем максимальное рабочее давление в циркуляционном цикле, причем эта холодильная установка состоит по меньшей мере из одного или более испарителей или теплообменников, оборудования для циркуляции холодильного агента и одного или более конденсаторов и также по меньшей мере одного контейнера для холодильного агента, соединенного с холодильным циклом

Изобретение относится к холодильной технике

Изобретение относится к холодильной технике

Изобретение относится к холодильной системе и способу производства холода

Изобретение относится к холодильной технике. Холодильник с низкотемпературным отделением, содержащий холодильное отделение (2) для охлаждения и хранения предмета, который хранят; морозильное отделение (4) для замораживания и хранения предмета, который хранят; первый компрессор (11) для выполнения первого холодильного цикла (10), в котором течет первый хладагент; первое устройство (12) теплоотдачи, предусмотренное в высокотемпературной секции первого холодильного цикла (10); первый испаритель (14), предусмотренный в низкотемпературной секции первого холодильного цикла (10); второй компрессор (21) для выполнения второго холодильного цикла (20), в котором течет второй хладагент; второй испаритель (24), предоставленный низкотемпературной секции второго холодильного цикла (20); и промежуточный теплообменник (31) для осуществления теплообмена между низкотемпературной секцией первого холодильного цикла (10) и высокотемпературной секцией второго холодильного цикла (20). Первый испаритель (14) охлаждает холодильное отделение (2), а второй испаритель (24) охлаждает морозильное отделение (4). Техническим результатом изобретения является снижение потребления электроэнергии. 6 н. и 38 з.п. ф-лы, 25 ил.

Изобретение относится к холодильной технике и может быть использовано как испаритель-конденсатор в каскадных холодильных установках. В испарителе-конденсаторе каскадных холодильных машин, состоящем из двух змеевиковых теплообменников, соединенных между собой теплопроводящими ламелями, закрепленных на общей раме, змеевики погружены в промежуточный жидкий хладоноситель, содержащийся в теплоизолированном корпусе. Технический результат - аккумулирование холода в промежуточном хладоносителе, что позволяет исключить синхронный запуск компрессоров обеих ветвей каскада и уменьшить нагрузку на электрическую сеть и, соответственно, нагрузку на сами электродвигатели компрессоров в период выхода их на рабочий режим. 1 ил.

Изобретение может быть использовано в системах кондиционирования, в пищевой и химической промышленности. Холодильная каскадная установка с различными рабочими веществами каскадов, состоящая из одноступенчатых машин, называемых нижней и верхней ветвью каскада и объединяемых общим испарителем-конденсатором, включающая компрессоры, теплообменники, термоизолированный аккумулятор холода. Верхняя ветвь каскада выполнена разомкнутой с применением в ней пополняемого извне рабочего тела R718 - воды или водных растворов солей в качестве хладоносителя, с испарением незначительной части воды для удаления суммарных теплопритоков, вакуумируемый испаритель-конденсатор соединен с вакуум-насосом для удаления из него паров испаренной воды в окружающую среду. Нижняя ветвь каскада выполнена разомкнутой с использованием в ней атмосферного воздуха и/или замкнутой, причем конденсаторы нижней ветви каскада размещены внутри вакуумируемого испарителя-конденсатора верхней ветви каскада. Техническим результатом является стабильность работы холодильной каскадной установки вне всякой зависимости от внешних температурных условий окружающей среды. 2 ил.

Изобретение относится к холодильной технике. Каскадная холодильная машина содержит в нижней ветви каскада, установленные последовательно, отделитель жидкости, разделяющий поток хладагента на газообразную и жидкую составляющие, предварительный рекуперативный теплообменник, основной рекуперативный теплообменник, основное дросселирующее устройство, испаритель, компрессор и конденсатор. При этом первый выход отделителя жидкости соединен с входом прямого потока хладагента в предварительный рекуперативный теплообменник, а второй выход отделителя жидкости соединен через предварительное дросселирующее устройство с входом обратного потока в предварительный рекуперативный теплообменник. Выход потока хладагента из конденсатора и вход в отделитель жидкости связаны между собой теплообменником, являющимся конденсатором-переохладителем для нижней ветви каскада и испарителем для верхней ветви каскада. Верхняя ветвь каскада представляет собой одноступенчатую холодильную машину, в которой последовательно установлены компрессор, конденсатор, ресивер, дросселирующее устройство, испаритель. Использование данного изобретения позволяет повысить термодинамическую эффективность низкотемпературного холодильного цикла при работе на низких температурных уровнях за счет его новой организации. 1 ил.

Изобретение относится к холодильной технике, предназначено для использования в низкотемпературных парокомпрессионных холодильных машинах, работающих на многокомпонентных смесях хладагентов, для регулирования состава хладагента, поступающего в испаритель. Система регулирования состава хладагента, содержащая отделитель жидкости, расположенный после конденсатора, и перепускную линию с последовательно расположенными перепускным соленоидным вентилем, ресивером и дросселирующим устройством. Хладагент из перепускной линии направляется непосредственно на всасывание в компрессор, при этом подача хладагента из перепускной линии на всасывание в компрессор регулируется дополнительным соленоидным вентилем, расположенным между ресивером и дросселирующим устройством перепускной линии, которым управляет по заданной программе программируемый блок управления. Изобретение позволяет повысить термодинамическую эффективность парокомпрессионной холодильной машины, работающей на многокомпонентной смеси хладагентов. 1 з.п. ф-лы, 1 ил.

Предложенная система охлаждения содержит холодильный контур (1), по которому циркулирует хладагент и который содержит в направлении потока хладагента: по меньшей мере, один компрессор (2a, 2b, 2c, 2d); по меньшей мере, один конденсатор (4); по меньшей мере, одно дросселирующее устройство (8, 10); и, по меньшей мере, один испаритель (11) для обеспечения холодопроизводительности. Система охлаждения дополнительно содержит: контур (20) переохлаждения, предназначенный для переохлаждения хладагента, циркулирующего в холодильном контуре (1), при этом конфигурация контура (20) переохлаждения обеспечивает циркуляцию переохлаждающего хладагента, а этот контур содержит, по меньшей мере, один компрессор (22, 23) переохладителя; по меньшей мере, одно теплообменное средство (6, 7), расположенное ниже по потоку от упомянутого, по меньшей мере, одного конденсатора (4) и имеющее конфигурацию, обеспечивающую теплообмен между холодильным контуром (1) и контуром (20) переохлаждения, при этом упомянутое, по меньшей мере, одно теплообменное средство (6, 7) содержит, по меньшей мере, один датчик температуры; и блок (15) управления, конфигурация которого обеспечивает управление, по меньшей мере, одним компрессором (2a, 2b, 2c, 2d) холодильного контура (1) и, по меньшей мере, одним компрессором (22, 23) переохладителя контура (20) переохлаждения таким образом, что удовлетворяется требование по холодопроизводительности, обеспечиваемой упомянутым, по меньшей мере, одним испарителем (11), и таким образом, что температура в упомянутом, по меньшей мере, одном теплообменном средстве (6, 7), измеряемая, по меньшей мере, одним датчиком температуры, находится в заранее определенном диапазоне. При использовании изобретения повышается КПД холодильных контуров. 2 н. и 19 з.п. ф-лы, 3 ил.
Наверх