Способ разведки очагов загрязнения подземных вод

 

Использование: в гидрогеологии и инженерной геологии, преимущественно при исследованиях загрязненных подземных вод. Сущность: проводят электроразведочные работы. Бурят пусковую скважину, вводят в нее водный раствор соли парамагнитного многоядерного металла, например хлорного железа. Бурят в направлении движения потока вторую скважину или ищут выход подземных вод на дневную поверхность. Повторно закачивают электролит и периодически отбирают пробы воды из второй скважины или из поверхностного источника. Проводят их исследование методом ЯМР и рассчитывают параметры очагов загрязнения подземных вод. Технический результат - повышение точности и достоверности способа. 3 табл.

Изобретение относится к области гидрогеологических исследований динамики подземных вод и может быть использовано в гидрогеологии и инженерной геологии, преимущественно при исследованиях загрязненных подземных вод.

Известен способ определения скорости и направления движения подземных вод, включающий бурение трех скважин, расположенных по углам треугольника, и одной скважины, расположенной в центре треугольника, закачку в нее раствора радиоактивной соли и определение в периферийных скважинах интенсивности гамма-излучения с помощью счетчика Гейгера-Мюллера (авт. св. 90314, МПК 21 д, 1964 г.). Недостатком известного способа является использование радиоактивного вещества, загрязняющего подземные воды и необходимость соблюдения специальных мер техники безопасности при проведении работ.

Известен способ определения скорости и направления движения подземных вод, включающий наблюдение за водным потоком не менее, чем в трех скважинах, расположенных по углам треугольника, в центре которого размещена пусковая скважина, в которую помещают термоэлемент, изменяют температуру пластовой воды, а в наблюдательных скважинах измеряют ее температуру, и по характеру изменения теплового поля в пространстве и времени судят о гидродинамических параметрах водных потоков и тепловых характеристиках водоносного горизонта (авт. св. 792197, МКИ G 011 V 9/00, 1980 г.). Известный способ является дорогостоящим, поскольку требует бурения большого количества скважин и использования термоэлемента с целью прогрева пластовой воды, что связано с большими энергозатратами. Кроме того, способ не позволяет провести разведку очагов загрязнения подземных вод с достаточной достоверностью и точностью.

Наиболее близким к предлагаемому изобретению является способ разведки очагов загрязнения подземных вод. включающий проведение электроразведочных работ, выбор места и бурение пусковой скважины, введение в нее электролита - хлорида натрия - и определение смещения эквипотенциалей электрического поля в направлении потока (Ж. Фрид. Загрязнение подземных вод. М.: Недра, 1981, с. 110). Способ позволяет определить направление фильтрации в водоносном горизонте и скорость движения подземных вод, однако требует больших затрат из-за необходимости бурения группы скважин.

Известный способ не позволяет достичь необходимой точности и достоверности в процессе разведки очагов загрязнения подземных вод, Использование в качестве электролита раствора хлорида натрия требует применения его в больших количествах и не позволяет надежно идентифицировать применяемую "метку", поскольку хлорид натрия является основным компонентом пластовых вод.

Необходимость изучения движения пластовых жидкостей появляется при решении различных задач, возникающих как в гидрогеологии, так и в промышленном и питьевом водоснабжении, сельском хозяйстве, экологических разработках и т. п. Умение доступно и четко "метить", пластовые жидкости и надежно идентифицировать применяемую "метку" является чрезвычайно важной проблемой, оптимальное решение которой позволяет успешно решать поставленные задачи.

В основу настоящего изобретения положена задача создания способа разведки очагов загрязнения подземных вод, обладающего высокой точностью и достоверностью и позволяющего рассчитывать большее число параметров очагов загрязнения при наименьших затратах.

Поставленная задача решается тем, что в способе разведки очагов загрязнения подземных вод, включающем проведение полевых электроразведочных работ, выбор места и бурение пусковой скважины, введение в нее электролита и определение смещения эквипотенциалей электрического поля в направлении потока, в качестве электролита используют водный раствор соли парамагнитного многозарядного металла, например, хлорное железо, а в направлении движения потока бурят вторую скважину или находят выход подземных вод на дневную поверхность, затем в пусковую скважину повторно закачивают электролит, а из второй скважины или из поверхностного источника периодически отбирают пробы воды и проводят их исследования методом ядерно-магнитной релаксации, после чего рассчитывают параметры очагов загрязнения подземных вод.

Предлагаемый способ основан на использовании в качестве электролита водорастворимых солей многовалентных металлов, обладающих парамагнитными свойствами, с последующей их идентификацией импульсным методом ядерно-магнитной релаксации (ЯМР). Указанные соли (трассеры), должны отвечать таким критериям, как: совместимость с пластовыми жидкостями, экологическая безопасность, наличие надежных методов идентификации, доступность и дешевизна. Используемое в заявленном нами способе хлорное железо FеCl3, отвечает вышеперечисленным требованиям и используется в способе в виде водных растворов.

Испытание водных растворов хлорного железа в качестве электролита - трассера для разведки очага загрязнения подземных вод проводят в лабораторных и промысловых условиях.

В предварительных лабораторных экспериментах измеряют времена релаксации T1 водных растворов хлорного железа различных исходных концентраций в свободном объеме, в пористой среде, а также после вытеснения их исходной водой на установке (УИПК - 1М). В качестве исходной воды используют воду из родника 33, расположенного на опытной площадке 1, а в качестве индикатора - промышленный образец FеСl36H2O. Пористой средой служит фракция кварцевого песка с размером зерен от 0,25 до 0,37 мм, отмытого от глинистой и карбонатной составляющих и имеющая пористость порядка 30%, проницаемость 400-600 мД, заданная скорость фильтрации - 3,0 м/сут.

Проводят вытеснение водных растворов FеСl32О из образцов пористой среды на УИПК - 1 м. Измеряют времена релаксации проб воды методом ЯМР, поскольку величина, обратная времени релаксации (скорость релаксации), пропорциональна концентрации хлорного железа. Релаксационные характеристики водных растворов хлорного железа после вытеснения из образцов пористой среды приводим в таблице 1.

Из полученных результатов следует: чем концентрированнее раствор в пористой среде, тем больший объем на выходе из модели будет сохранять парамагнитную метку. Следовательно, в промысловых экспериментах желательно применять максимально концентрированные растворы.

Промысловые эксперименты по разведке очага загрязнения проведены на территории опытной площадки 1, где расположен источник подземных вод - родник 33, в котором концентрация хлоридов на порядок превышает ПДК. Возможным источником загрязнения является нагнетательная скважина, гипсометрически расположенная на 15 м выше родника и на расстоянии 325 м от него. Работы проводились в следующей последовательности.

1. В прискваженной зоне предполагаемого источника загрязнения (нагнетательная скважина) проводят детальную съемку естественных электрических потенциалов (Еп), после интерпретации которых построили линии изопотенциалов. На одном из маршрутов съемки, совпадающим с направлением "скважина-родник", выявили мощный пик значения п=+120 мВ, что свидетельствует о движении жидкости из скважины в направлении родника Значения Еп по этому направлению представлены в таблице 2.

В скважину - потенциальный источник загрязнения (далее именуемая пусковая скважина) - закачивают трассер. В качестве трассера используют раствор 300 кг хлорного железа в 6,0 м3 воды. Закачку осуществляют с помощью автоцистерны самотеком.

3. Проводят повторную съемку Еп по первоначальной сетке измерений. На том же маршруте было установлено уменьшение значения аномалии Еп со 120 до 82 мВ. Фоновые значения Еп остались практически без изменения.

4. Между пусковой скважиной и родником на расстоянии порядка 100 м от пусковой скважины бурят специальную скважину до уровня подземных вод.

5. В пусковую скважину повторно закачивают трассер (500 кг хлорного железа в 10 м3 воды).

6. Примерно через 2 ч в специальной скважине появилась окрашенная вода (FеCl3). В течение 2 суток с момента закачки трассера из специальной скважины отбирают пробы воды и определяют времена ее релаксации Т2 методом ЯМР. Результаты приведены в таблице 3.

По результатам анализа проб воды можно определить скорость фильтрации как скорость снижения концентрации загрязнителя.

Предлагаемый способ позволяет определить некоторые параметры очага загрязнения подземных вод, например активную трещиноватость пласта, пористость среды, проводимость, коэффициент водоотдачи.

Например, величину активной трещиноватости исследуемого вокруг скважины 27 пласта оценивают так.

Во время закачки трассера в опробуемом пласте вокруг скважины 27 образовался искусственно созданный фильтрационный поток, по своей интенсивности существенно преобладавший над потоком подземных вод естественного происхождения. Поэтому, принимая радиальную схему миграции трассера, можно оценить величину активной трещиноватости пласта по формуле N = Qt/r2m, (4.1) где Q - расход нагнетания (336 м3/сутки), t - время прохождения трассера от точки запуска к точке регистрации (33 минуты), r - расстояние между нагнетательной скважиной и точкой регистрации прихода трассера (20 м), m - мощность водоносного пласта (1 м).

Подставляя числовые значения в формулу, получаем безразмерную величину активной трещиноватости водоносного пласта 0,006 или 0,6%. Предложенный способ является надежным и достоверным и обладает более широкими возможностями, позволяя рассчитывать большее число параметров очагов загрязнения подземных вод.

Формула изобретения

Способ разведки очагов загрязнения подземных вод, включающий проведение электроразведочных работ, выбор места и бурение пусковой скважины, введение в нее электролита и определение смещения эквипотенциалей электрического поля в направлении потока, отличающийся тем, что в качестве электролита используют водный раствор соли парамагнитного многозарядного металла, например хлорное железо, а в направлении движения потока бурят вторую скважину или находят выход подземных вод на дневную поверхность, затем в пусковую скважину повторно закачивают электролит, а из второй скважины или из поверхностного источника периодически отбирают пробы воды и проводят их исследования методом ядерно-магнитной релаксации, после чего рассчитывают параметры очагов загрязнения подземных вод.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5



 

Похожие патенты:

Изобретение относится к геологическим методам поисков и разведки месторождений подземных вод и может быть использовано для геологического обоснования проведения поисково-разведочных работ на подземные пресные и минерализованные воды

Изобретение относится к устройствам для дистанционного измерения параметров водной среды, в частности для измерений температуры, гидростатического давления, удельной электропроводности, водородного показателя pH, окислительно-восстановительного потенциала Eh, содержания растворенного кислорода, концентраций различных ионов водной среды в скважинах

Изобретение относится к устройствам для извлечения растворенных в жидкостях газов и может быть использовано для определения газосодержания жидкости по результатам анализа полученных газовых смесей

Изобретение относится к геохимии стабильных изотопов и гидрогеологии

Изобретение относится к области сейсмологии, в частности к сейсморазведке, и может быть использовано для прямых поисков подземных вод (артезианских бассейнов)

Изобретение относится к устройствам для дистанционного измерения параметров водной среды, в частности для измерений температуры, гидростатического давления, удельной электропроводности жидкости, содержания нефти в воде, водородного показателя рН, окислительно-восстановительного потенциала Eh, концентраций различных ионов водной среды, а также для измерения электрических полей в скважинах

Изобретение относится к области гидрогеологии и может найти применение при проектировании подземных водозаборов, гидротехнических сооружений, объектов горных работ и дренажных устройств

Изобретение относится к гидрогеологии и может быть использовано для изучения динамики подземных вод

Изобретение относится к области гидрогеологии и может быть использовано для изучения и оценки достаточности ресурсов подземных вод в условиях дополнительного притока глубинных вод для водообеспеченности водозаборного сооружения. Сущность: отбирают водные пробы из водозаборных скважин. Альфа-спектрометрическим методом определяют величину отношения альфа-активностей изотопов урана-234 и урана-238 (234U/238U=γ). Строят линии равных значений величины по площади и разрезу водоносного горизонта. По аномалиям на картах в горизонтальной плоскости и куполовидной конфигурации изолиний величины γ в вертикальной плоскости определяют в пределах водоносного горизонта очаги поступления глубинных вод. Определяют конфигурацию границ участка распространения глубинных вод. Затем по максимальным значениям величины γ выявляют участки поступления глубинных вод в пределы водоносного горизонта. Определяют величину изменения динамического уровня ΔH подземных вод в пределах этих участков относительно среднего уровня для изучаемого района. При положительном значении величины ΔH делают вывод о дополнительном восполнении запасов подземных вод в эксплуатируемом горизонте за счет притока глубинных вод; при отрицательном значении величины ΔH - о превышении суммарного водоотбора над суммарными ресурсами собственно пластовых и глубинных вод и необеспеченности водозаборных сооружений даже суммарными ресурсами собственно пластовых и глубинных вод; при ΔH=0 - о восполнении дефицита ресурсов собственно пластовых вод за счет дополнительного поступления глубинных вод. Технический результат: повышение эффективности и геологической информативности получаемых результатов при определении степени обеспеченности водоносных горизонтов ресурсами подземных вод в условиях неучитываемого гидрогеологическими способами дополнительного притока глубинных вод, уменьшение трудоемкости проведения работ. 3 ил.

Изобретение относится к способам дистанционного изучения геологической среды. Сущность: проводят тепловизионную съемку геологической среды. Получают и обрабатывают спектрозональные снимки в диапазонах видимого спектра и дальнего инфракрасного интервала длин волн. Формируют объемную модель блоково-разломных структур плотности потока в дальнем спектре инфракрасного интервала длин волн. Интерпретируют полученные данные и составляют результативные карты. Причем съемку ведут с пошаговым линейным приближением к выделенной области геологической среды. При этом после получения первого снимка проводят его анализ на наличие опасных участков. При выявлении опасных участков проводят их детализацию на зоны и равноудаленную съемку каждой зоны при последующем приближении. Далее продолжают приближение, детализацию и съемку каждой зоны до получения снимков с максимальным разрешением. На основе интерпретации объемной модели блоково-разломных структур плотности потока формируют трехмерный образ геологической среды с выделением геотермических признаков. Судят об опасных техногенных участках исследуемой геологической среды и местоположении подземных вод. Технический результат: повышение точности диагностики геологической среды. 2 н. и 30 з.п. ф-лы, 1 ил.

Изобретение относится к нефтегазовой геологии и может быть использовано для оценки перспектив разработки нефтегазовых месторождений. Сущность: отбирают пробы попутных вод из промысловых скважин после сепарации водонефтяной смеси. Выделяют из водной пробы природный уран в необходимом для физических измерений количестве. Проводят радиохимическую очистку природного урана от альфа-активных изотопов радия и тория. Проводят электролитическое осаждение урана на диск из нержавеющей стали. Выполняют альфа-спектрометрическое измерение количества индикатора - отношения альфа-активностей γ=234U/238U. Строят линии равных значений этого индикатора по площади и разрезу водоносного горизонта. Определяют пространственные процессы образования попутных вод в результате взаимодействия вод различных источников. Судят о наличии притока глубинных вод совместно с глубинными углеводородными флюидами в пределы продуктивного горизонта и выделяют очаги их поступления. Технический результат: повышение эффективности выявления очагов современного поступления углеводородных флюидов в пределы эксплуатируемых нефтегазовых месторождений. 2 табл., 3 ил.

Изобретение относится к геологическим методам поиска и разведки месторождений подземных вод в криолитозоне и может быть использовано в районах Крайнего Севера, Западной и Восточной Сибири, Северо-Востока. Сущность: способ включает определение перспективных площадок, проведение геофизических исследований многоразносной установкой бесконтактного измерения электрического поля, составение карты равных кажущихся сопротивлений для различных глубин исследований, выделение и оконтуривание таликовых зон. Вдоль протяженности таликовой зоны разбивается профиль для замеров бесконтактного измерения электрического поля многоразносной установкой, составляется геоэлектрический разрез кажущихся сопротивлений. В характерных точках разреза определяются пикеты для измерений вертикального электрического зондирования, по результатам которого строится геоэлектрический разрез кажущихся сопротивлений и закладываются площадки в аномальной зоне для бурения разведочных скважин на подземные воды. Технический результат: увеличение точности обнаружения месторождений подземных вод в районах сплошного распространения многолетнемерзлых пород, сокращение времени работ. 3 ил.

Изобретение относится к методам поисков месторождений подземных вод и может быть использовано для геологического обоснования проведения поисково-разведочных работ на подземные, пресные и минерализованные воды. Технический результат изобретения выражается в повышении достоверности прогноза подземных вод при одновременном снижении трудоемкости работ. Заявленный технический результат достигается за счет того, что в способе поиска и разведки подземных вод, включающем предварительные (дистанционные) исследования земной поверхности с выделением потенциально водоносных структур, указанные предварительные исследования земной поверхности осуществляют путем проведения комплексной аэрогеофизической разведки становлением электромагнитного поля и магниторазведки. По данным комплексной аэрогеофизической разведки выделяют зоны пониженного сопротивления и зоны пониженных значений магнитного поля. В выделенных зонах проводят наземные электроразведочные работы, по которым локализуют аномалии электрического сопротивления, электрической поляризуемости и естественного электрического поля. Водонасыщенные зоны определяют по совмещению минимумов аномалий электрического сопротивления и электрической поляризуемости с аномалиями повышенного естественного электрического поля. Аэрогеофизическую съемку преимущественно осуществляют с использованием комплексной аэрогеофизической системы, одновременно измеряющей как минимум два параметра: магнитное поле и электрическое сопротивление методом становлением электромагнитного поля. Кроме того, в пределах водоносной структуры, выделенной по данным ВП СЭП и ЕП, дополнительно выполняют геофизические исследования методом электротомографии. 2 з.п. ф-лы, 5 ил., 1 табл.
Наверх