Способ контроля прочности бетона

 

Изобретение относится к области контроля прочности бетона. Способ включает локальное разрушение бетона конструкции и определение прочности бетона по градуировочной зависимости параметров разрушения. Новым является то, что при локальном разрушении бетона конструкции регистрируют параметры сигналов акустической эмиссии N через равные промежутки времени ti, определяют объем разрушенного материала V и вычисляют параметр скорости разрушения объема бетона S = V/ti, а прочность бетона определяют по градуировочной зависимости между прочностью бетона и параметрами N и S. Технический результат изобретения состоит в снижении трудоемкости и в повышении точности определения прочности бетона. 1 табл.

Изобретение относится к области неразрушающего контроля прочности бетона конструкций.

Известен способ неразрушающего контроля прочности бетонов /1/, основанный на корреляционной связи между поверхностной прочностью бетона конструкций и косвенными параметрами прочности (значение отскока бойка от поверхности бетона, размеры отпечатка на бетоне, параметр ударного импульса и т.д).

Недостатком данных методов является то, что они позволяют определить только прочность бетона поверхностных слоев. Кроме того, при изменении состава бетонов, условий твердения конструкции, сроков испытаний, имеющаяся градуировочная зависимость должна уточняться.

Наиболее близким к заявляемому является способ контроля /2/, включающий определение усилия вырыва анкерного устройства из бетона и определение по усилию вырыва прочности бетона (метод отрыва со скалыванием).

Недостатком данного способа является ограничения по его использованию в густоармированных и тонкостенных конструкциях, прочность бетона глубинных слоев определяется глубиной заделки анкерного устройства и значительная трудоемкость проведения измерения.

Технической задачей изобретения является снижение трудоемкости и повышение точности определения прочности бетона.

Техническая задача решается таким образом, что в способе контроля прочности бетона, включающем локальное разрушение бетона конструкции и определение прочности бетона по градуировочной зависимости параметров разрушения, согласно изобретению при локальном разрушении бетона конструкции регистрируют параметры сигналов акустической эмиссии N через равные промежутки времени ti, определяют объем разрушенного материала V и вычисляют параметр скорости разрушения объема бетона S = V/ti, а прочность бетона определяют по граудировочной зависимости между прочностью бетона и параметрами N и S.

Заявляемый способ контроля прочности бетона конструкций отличается от известного тем, что в процессе локального разрушения бетона через равные промежутки времени ti регистрируются параметры сигналов акустической эмиссии N, определяют объем разрушенного материала V, и вычисляют параметр скорости разрушения объема бетона S = V/ti, затем по граудировочной зависимости между прочностью бетона и параметрами S и N судят о прочности бетона.

Данный способ позволяет повысить точность измерений и расширить область применения за счет использования метода акустической эмиссии, информативные параметры сигналов которого тесно связаны со структурными изменениями, происходящими в бетоне конструкции при локальном разрушении.

Заявленный способ позволяет снизить трудоемкость проведения испытаний за счет отказа от технологической операции по вырыву анкера из бетона.

Увеличение глубины сверления позволяет контролировать прочность глубинных слоев бетона в конструкциях. Предлагаемый способ позволит также контролировать прочность бетона в густоармированных конструкциях. В этом случае диаметр бура определяет допустимое расстояние между стержнями арматуры.

Пример.

Экспериментальные исследования проводились на бетонных образцах, изготовленных из бетонов трех составов. Составы бетона подбирались таким образом, чтобы в проектном возрасте класс бетона по прочности на сжатие в образцах составил В20, В30, В45. Образцы изготавливались в виде призм размером 48х32х30 см. Методика исследований заключалась в следующем: к бетонному образцу на воскоканифольном компаунде крепился поверхностный волновод. На волновод устанавливался датчик акустической эмиссии. В соответствии с инструкцией подготавливался к измерению акустико-эмиссионный прибор АФ-15. В бетонном образце электроперфоратором сверлилось отверстие диаметром 24 мм. Во время сверления регистрировалась скорость счета акустической эмиссии N через равные промежутки времени t=1 сек. Как правило, глубина сверления отверстия в образце составляла 50-80 мм. После этого, определялся объем разрушенного материала. Прочность бетона образца определялась методом отрыва со скалыванием (ГОСТ 22690-88).

Обработка результатов измерений включала в себя определение среднего значения скорости счета акустической эмиссии вычисления S= V/t, где V - объем разрушенного бетона, см3; t - общее время сверления отверстия в образце, с. Всего было испытано 14 образцов. Результаты испытаний приведены в таблице.

В результате вычислений была получена двухмерная регрессивная модель, построенная между прочностью бетона R и параметрами N и S Коэффициент корреляции данной модели составляет R=0,999.

Таким образом, использование данного метода контроля прочности бетона конструкций позволяет с минимальными погрешностями определять прочность бетона.

Источники информации 1. ГОСТ 22690-88. Бетоны. Определение прочности механическими методами неразрушающего контроля. - М.: Издательство стандартов, 1999, с.8-9.

2. То же, с. 10 (прототип).

Формула изобретения

Способ контроля прочности бетона, включающий локальное разрушение бетона конструкции и определение прочности бетона по градуировочной зависимости параметров разрушения, отличающийся тем, что при локальном разрушении бетона конструкции регистрируют параметры сигналов акустической эмиссии N через равные промежутки времени ti, определяют объем разрушенного материала и вычисляют параметр скорости разрушения объема бетона S = V/ti, а прочность бетона определяют по градуировочной зависимости между прочностью бетона и параметрами N и S.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к области аналитической химии и может найти применение для определения содержания примеси в различных специальных жидкостях, таких как масло, топливо и гидравлические жидкости, в различных отраслях промышленности, где эти жидкости применяются

Изобретение относится к исследованиям эксплуатационных свойств нефтепродуктов, а именно к определению содержания ингибиторов окисления в трансформаторных маслах (ТМ) и может быть использовано для определения сроков замены или обновления масел

Изобретение относится к технической диагностике двигателей внутреннего сгорания и может быть использовано при определении качества масла, работающего в двигателе внутреннего сгорания (ДВС)

Изобретение относится к экспериментальной биологии и медицине, а именно к нейрохимическим способам подбора оптимальных тренировок к гипоксии, и может быть использовано для прогнозирования эффективности числа тренировок, приводящих к развитию адаптивной реакции энергетического метаболизма мозга, вследствие чего повышается устойчивость тканей организма, в частности мозга, к недостатку кислорода

Изобретение относится к химмотологии охлаждающих жидкостей и может быть использовано в научно-исследовательских и заводских лабораториях для подбора новых присадок и разработки новых образцов охлаждающих жидкостей, для определения совместимости отечественных и зарубежных охлаждающих жидкостей, а также в лабораториях автопредприятий для решения вопроса о смешении разных марок охлаждающих жидкостей в условиях их дефицита

Изобретение относится к электроизмерительной технике и может быть использовано при бесконтактном контроле и регулировании тока

Изобретение относится к прикладной акустике и может использоваться для обнаружения локальных дефектов

Изобретение относится к неразрушающему контролю и может быть использовано для контроля физико-механических свойств материалов и изделий по затуханию ультразвуковых колебаний

Изобретение относится к способам измерения акустических характеристик материалов и предназначено для определения комплексного коэффициента отражения акустических сигналов от поверхности исследуемых материалов

Изобретение относится к измерительной технике и может быть использовано в текстильной промышленности для контроля качества пряжи по коэффициенту затухания акустического сигнала

Изобретение относится к средствам контроля сплошности породного массива и блоков непосредственно на месте их добычи путем ультразвуковой дефектоскопии

Изобретение относится к неразрушающему контролю и может быть использовано для определения затухания и скорости распространения упругих волн в образцах материалов

Изобретение относится к измерительной технике и может быть использовано для определения акустических параметров материалов , например скорости и поглощения ультразвуковых колебаний и т.д

Изобретение относится к измерительной технике и может быть использовано для неразрушакнчего контроля качества материалов по величине амплитуд эхо-импульсов и по временным интервалам между эхо-импулъсамн я химической , металлургической и других отраслях промышленности

Изобретение относится к ультразвуковым измерениям и является усовершенствованием изобретения по авт

Изобретение относится к способам измерения скорости распространения ультразвуковых волн в кусках горных пород и может быть использовано в нефтедобывающей промышленности непосредственно в процессе бурения скважин
Наверх