Способ получения высокооктанового кислородсодержащего компонента моторных топлив

 

Изобретение относится к нефтехимии, в частности к способам получения высокооктановых кислородсодержащих компонентов, используемых в качестве добавки к моторным топливам. Изобретение решает техническую задачу расширения сырьевой базы и увеличения ассортимента высокооктановых кислородсодержащих компонентов моторных топлив. Предлагаемый способ получения высокооктанового кислородсодержащего компонента моторных топлив осуществляют путем взаимодействия изобутена и линейных бутенов бутан-бутиленовых фракций с формальдегидом в присутствии серной кислоты при температуре 45-80oС и давлении 1,4-1,8 МПа в течение 5-12 ч с получением высокооктанового кислородсодержащего компонента следующего состава, мас.%: 4,4-диметил-1,3-диоксан 44,1-63,5; 4,5-диметил-1,3-диоксан 27,0-45,0; 4-этил-1,3-диоксан 7,5-8,9; прочие - до 2. 1 ил., 2 табл.

Изобретение относятся к области нефтехимии, в частности к способам получения высокооктановых кислородсодержащих компонентов, используемых в качестве добавки к моторным топливам.

Известен способ получения метил-трет-бутилового эфира (МТБЭ), используемого в качестве высокооктанового кислородсодержащего компонента моторных топлив (патент РФ 2104993, С 07 С 41/06, 43/04, БИ 5, 20.02.98.).

Известный способ получения МТБЭ осуществляют путем взаимодействия метанола с изобутиленом изобутиленсодержащих фракций в присутствии сульфокатионита в Н-форме при температуре 20-100oC с последующим разделением реакционной смеси ректификацией, причем используют метанол, содержащий 5-10 мас.% воды, и изобутиленсодержащую фракцию подают дробно в несколько зон реакции с непрерывным отводом теплоты реакции.

Недостатком известного способа получения МГБЭ, используемого в качестве высокооктанового кислородсодержащего компонента моторных топлив, является использование дефицитного сырья - изобутена, что ограничивает ресурсы получения этого компонента. К тому же МГБЭ является низкокипящим компонентом бензинов (температура кипения составляет 55oС), что обусловливает его высокую летучесть при хранении топлива.

Наиболее близким техническим решением к заявляемому изобретению является способ получения алкил-трет-бутиловых эфиров, используемых в качестве высокооктанового кислородосодержащего компонента моторных топлив (патент РФ 2101274, С 07 С 43/04, 11/08, 41/06, БИ 1, 10.01.98).

Способ получения алкил-трет-бутиловых эфиров, включающий контактирование потока С4-углеводородов, содержащего изобутен, линейные бутены и бутаны, в секции синтеза алкилтрет-бутилового эфира с потоком алифатического спирта, отделение полученного эфира и непрореагировавшего спирта от остаточного потока углеводородов или его части в секции разделения для отделения бутанов от бутенов с получением потока углеводородов, содержащего извлеченные бутены, введение этого последнего потока в секцию скелетной изомеризации для превращения линейных бутенов в изобутен с получением изомеризованного потока и рециклизацию изомеризованного потока в секцию синтеза алкил-трет-бутилового эфира.

Недостатком известного способа является вовлечение в реакцию синтеза эфиров только изобутена, содержащегося в основном в газах каталитического крекинга. Газы термических процессов требуют применения дополнительных стадий обработки для превращения линейных бутенов в изобутен с последующим вовлечением его в синтез эфиров. Это приводит к ограничению сырьевых ресурсов, усложнению и удорожанию процесса.

Заявляемое изобретение решает техническую задачу расширения сырьевой базы и увеличения ассортимента высокооктановых кислородсодержащих компонентов моторных топлив.

Сущность изобретения заключается в том, что в отличие от известного способа получения высокооктановых кислородсодержащих компонентов моторных топлив, включающем взаимодействие изобутена и линейных бутенов бутан-бутиленовых фракций (ББФ) с кислородсодержащими соединениями в присутствии катализатора с последующим разделением реакционной смеси, согласно предлагаемому изобретению осуществляют взаимодействие изобутена и линейных бутонов с формальдегидом при температуре 45-80oC, в качестве катализатора используют серную кислоту.

Высокооктановый кислородсодержащий компонент может быть получен на установке, содержащей реактор периодического действия, сделанный из коррозионно-стойкого материала, который снабжен эффективным перемешивающим устройством.

На чертеже приведена схема пилотной установки.

Реакцию получения высокооктановых кислородсодержащих компонентов проводят при давлении 1,4-1,8 МПа, температуре 45-80oC и продолжительности 5-12 ч.

Сырьем процесса являются сжиженная ББФ, состав которой приведен в таблице 1, и формальдегид, который подается в реактор 1 в виде полимера - параформальдегида.

Способ получения высокооктанового кислородсодержащего компонента осуществляют следующим образом.

В реактор 1 загружают 200-400 г параформальдегида, затем добавляют 1000-1400 см3 воды и 70-160 см3 серной кислоты. Реактор 1 закрывают и подают в него 300-500 см3 сжиженной ББФ из промежуточной емкости 5. Расчетное количество ББФ из промежуточной емкости 5 выталкивают несмешивающейся жидкостью (глицерином) при помощи насоса 6. Расход глицерина определяют при помощи мерного цилиндра 7.

Температура в реакторе 1 поддерживается при помощи теплоносителя, подаваемого в рубашку реактора из термостата. Для контроля температуры в ходе реакции в реактор 1 встроен карман для термопары 4.

Давление в реакторе 1 поддерживается закачкой инертного газа с таким расчетом, чтобы ББФ находилась в жидкой фазе.

Эффективное перемешивание в реакторе 1 обеспечивается при помощи мешалки 2, работающей от электропривода.

По окончании реакции органический и водно-кислотный слои разделяют. Органический слой отмывают раствором аммиака для удаления следов формальдегида и серной кислоты и анализируют на хромато-масс-спектрометре.

Органический слой содержит смесь циклических кислородсодержащих соединений диоксанового и тетрагидрофуранового рядов со значительным преобладанием диоксановых компонентов.

Конверсия олефинов С4 составляет 50-55%, селективность по диоксанам - порядка 98%. Газ собирается в газгольдере. В промышленности газ можно отправлять на рециркуляцию для повышения конверсии.

Данные по составу получаемого высокооктанового компонента моторных топлив приведены в таблице 2.

Получаемый высокооктановый кислородсодержащий компонент имеет температуру кипения порядка 132-134oС (что хорошо укладывается в пределы кипения бензиновых фракций) и октановое число по моторному методу выше 100 пунктов.

Преимуществом изобретения является то, что в качестве исходного сырья для получения высокооктанового кислородсодержащего компонента используют все олефиновые углеводороды ББФ термодеструктивных процессов, а не только самый реакционноспособный олефин-изобутен, который является ценным сырьем нефтехимического синтеза.

В составе молекулы получаемых диоксанов содержатся два атомарных кислорода, в то время как в составе алкил-трет-бутиловых эфиров всего лишь один. Следовательно, чтобы довести моторные топлива по необходимому содержанию в их составе до 2,5 мас.% кислорода, нужно добавлять получаемого нами высокооктанового кислородсодержащего компонента в два раза меньше, чем алкил-трет-бутиловых эфиров.

Температура кипения получаемого высокооктанового кислородсодержащего компонента значительно выше, чем у самого высокооктанового из алкил-трет-бутиловых эфиров - МГБЭ (55oС), и составляет 132-134oС, что хорошо укладывается в пределы кипения бензиновых фракций. Это обеспечивает значительно меньшие потери высокооктанового кислородсодержащего компонента при хранении топлива. К тому же высокооктановый кислородсодержащий компонент имеет октановое число по моторному методу выше 100 пунктов.

Изобретение может быть реализовано в нефтехимии на установках получения 4,4-диметил-1,3-диоксана, где в качестве катализатора используется серная кислота.

Формула изобретения

Способ получения высокооктанового кислородсодержащего компонента моторных топлив путем взаимодействия изобутена и линейных бутенов бутан-бутиленовых фракций с кислородсодержащими соединениями в присутствии катализатора с последующим разделением реакционной смеси, отличающийся тем, что осуществляют взаимодействие изобутена и линейных бутенов бутан-бутиленовой фракции с формальдегидом в присутствие в качестве катализатора серной кислоты при температуре 45-80oС и давлении 1,4-1,8 МПа в течение 5-12 ч с получением высокооктанового кислородсодержащего компонента следующего состава, мас. %: 4,4-Диметил-1,3-диоксан - 44,1-63,5 4,5-Диметил-1,3-диоксан - 27,0-45,0 4-Этил-1,3-диоксан - 7,5-8,9 Прочие - До 2

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к новому химическому соединению, которое может найти применение в сельском хозяйстве в качестве гербицида

Изобретение относится к защите металлов от коррозии ингибиторами в сероводородсодержащих минерализованных средах и может быть использовано в промышленности для защиты стального оборудования от коррозионно-механического разрушения

Изобретение относится к синтезу промежуточного соединения, применяемого в процессе получения ингибиторов биосинтеза холестерина, более конкретно к способу получения сложного (4R-цис)-1,1-диметилэтилового эфира 6-цианометил-2,2-диметил-1,3-диоксан-4-уксусной кислоты

Изобретение относится к способам получения 4,4-диметил-1,3-диоксана (ДМД) и триметилкарбинола (ТМК) из формальдегида и изобутилена при весовом соотношении 1,1 - 1,2 в водном растворе при 90 - 110oC и давлении 17 - 25 атм в присутствии щавелевой кислоты

Изобретение относится к промежуточному продукту - трет-бутил(Е)-(6-{2-[4-(4-фторфенил)-6-изопропил-2-[метил(метилсульфонил)-амино]пиримидин-5-ил]винил}-(4R,6S)-2,2-диметил[1,3]диоксан-4-ил]ацетату, который может быть использован в синтезе соединения формулы IV, обладающего действием ингибитора HMG CoA-редуктазы, а следовательно, может быть использовано для получения фармацевтических средств для лечения, например, гиперхолестеринемии, гиперпротеинемии и атеросклероза

Изобретение относится к усовершенствованному способу осуществления реакции трансалкоголиза триметилолпропан моноциклического формаля (ТМП-МЦФ) или триметилолэтан моноциклического формаля (ТМЭ-МЦФ) с избытком одноатомного или двухатомного спирта при повышенной температуре и в присутствии кислотного катализатора для получения триметилолпропана (ТМП) или триметилолэтана (ТМЭ), соответственно, которые используются в качестве промежуточных соединений для получения широкого круга продуктов, и побочного продукта – ацеталя, а также относится к способу осуществления взаимодействия композиции, содержащей, по меньшей мере, 10 мас.% триметилолпропан-бис-монолинейного формаля (ТМП-БМЛФ) или триметилолэтан-бис-монолинейного формаля (ТМЭ-БМЛФ), не более чем около 5 мас.% воды и одноатомный или двухатомный спирт в избытке от стехиометрического количества, с сильным кислотным катализатором при температуре 30-300 0С и в течение промежутка времени, достаточного для превращения значительного количества указанного ТМП-БМЛФ или ТМЭ-БМЛФ в триметилолпропан или триметилолэтан, соответственно, и побочный продукт - ацеталь

Изобретение относится к усовершенствованному способу получения 4,4-диметил-1,3-диоксана (ДМД) - промежуточного продукта в производстве изопрена, заключающемуся в конденсации изобутилена в виде изобутиленсодержащей фракции с водным раствором формальдегида в присутствии кислотного катализатора при 80-100°С, давлении 1,6-2,0 МПа, с рециркуляцией упаренного водного слоя

Изобретение относится к способу получения производных 2-(6-замещенной-1,3-диоксан-4-ил)уксусной кислоты формулы 1 или его соли, или кислоты: где Х означает галоген, тозилатную, мезилатную, ацилоксигруппу, арилокси- или нитро-замещенную бензолсульфонильную группу и R 1, R2 и R3, каждая независимо означает C1-3 алкильную группу из соединения формулы 2: где Х имеет вышеуказанные значения, с использованием подходящего агента ацетализации, в присутствии кислотного катализатора, и с последующим преобразованием его, при необходимости, в соответствующую соль или кислоту

Изобретение относится к способу получения фторированного кетона нижеследующей формулы (5), который включает реакцию соединения нижеследующей формулы (3), имеющего содержание фтора по крайней мере 30 вес.%, с фтором в жидкой фазе, содержащей растворитель, выбранный из группы, состоящей из перфторалкана, перфторированного сложного эфира, перфторированного простого полиэфира, хлорфторуглеводорода, простого хлорфторполиэфира, перфторалкиламина, инертной жидкости, соединения нижеследующей формулы (2), соединения нижеследующей формулы (4), соединения нижеследующей формулы (5) и соединения нижеследующей формулы (6), с получением соединения нижеследующей формулы (4), а затем подвергание сложноэфирной связи в соединении формулы (4) реакции диссоциации в присутствии KF, NaF или активированного угля и при отсутствии растворителя: где группа RA представляет собой алкильную группу, частично галогенированную алкильную группу, содержащую образующий простой эфир кислородный атом алкильную группу или частично галогенированную содержащую образующий простой эфир кислородный атом алкильную группу, где каждая из указанных групп содержит от 1 до 10 атомов углерода;группа R AF, содержащая от 1 до 10 атомов углерода, является группой RA, которая была перфторирована;группа R B представляет собой алкильную группу, частично галогенированную алкильную группу, содержащую образующий простой эфир кислородный атом алкильную группу или частично галогенированную содержащую образующий простой эфир кислородный атом алкильную группу, где каждая из указанных групп содержит от 1 до 10 атомов углерода; группа RBF, содержащая от 1 до 10 атомов углерода, является группой RB, которая была перфторирована; группы RC и RCF являются одинаковыми, и каждая из групп RC и RCF содержит от 2 до 10 атомов углерода и представляет собой алкильную группу, частично галогенированную алкильную группу, содержащую образующий простой эфир кислородный атом алкильную группу или частично галогенированную содержащую образующий простой эфир кислородный атом алкильную группу, каждая из которых была перфторирована;или где группы RA и RB связаны друг с другом с образованием алкиленовой группы, частично галогенированной алкиленовой группы, содержащей образующий простой эфир кислородный атом алкиленовой группы или частично галогенированной содержащей образующий простой эфир кислородный атом алкиленовой группы, где каждая из указанных групп содержит от 3 до 6 атомов углерода; каждая из групп R AF и RBF является перфторированной группой, образованной RA и RB, и каждая из них содержит от 3 до 6 атомов углерода; и группы RC и RCF являются одинаковыми, и каждая из групп RC и R CF содержит от 2 до 10 атомов углерода ипредставляет собой алкильную группу, частично галогенированную алкильную группу, содержащую образующий простой эфир кислородный атом алкильную группу или частично галогенированную содержащую образующий простой эфир кислородный атом алкильную группу, каждая из которых была перфторирована

Изобретение относится к новому способу получения замещенных арилконденсированных азаполициклических соединений формул (II) и (VIII), новым промежуточным продуктам и способам их получения

Изобретение относится к способу получения производного 2-(6-замещенной-1,3-диоксан-4-ил)-уксусной кислоты формулы 1 где R1, R2 и R3 каждый независимо представляет собой С1-4 алкильную группу или где R 1 и R2 вместе с атомом углерода, с которым они связаны, образуют 5- или 6-членный циклоалкил, и где Y представляет собой RA-CO-, где RA выбран из группы алкила или арила с 1-12 атомами углерода, из его соответствующего производного 2-(6-замещенной)-1,3-диоксан-4-ил)-уксусной кислоты формулы 2 где R1, R2 и R3 являются такими, как они определены выше, и где X представляет собой галоген, в присутствии межфазного катализатора и оксилирующего агента, заключающемуся в том, что ион четвертичного фосфония формулы 3 где R4, R5 , R6, R7 каждый независимо представляет собой алкил, циклоалкил, аралкил или арил с 1-12 атомами углерода, используют в качестве межфазного катализатора, и ион формулы 4 где Y является таким, как он определен выше, используют в качестве оксилирующего агента, где RA , R4, R5, R 6, R7, в случае если R 4, R5, R6, R7 представляют собой арил или аралкил, могут быть замещены заместителями, выбранными из группы галогенов, алкокси с 1-6 атомами углерода, алкила с 1-6 атомами углерода или нитро

Изобретение относится к соединениям, которые применяются для получения эпотилонов или их производных, а именно соединениям формулы I, соединениям общей формулы III, к соединениям общей формулы XII, где R4 представляет собой C1-С6алкильную группу, где R1 и R2 могут иметь идентичные либо разные значения и независимо друг от друга представляют собой спиртовую защитную группу, такую, например, как бензил, трет-бутилдиметилсилил, триметилсилил, триэтилсилил, трет-бутилдифенилсилил, или в случае, когда R 1 и R2 соединены мостиковой связью, представляют собой кетальную защитную группу, такую, например, как Изобретение также относится к способу получения соединений формулы (I), который заключается в том, что исходное соединение общей формулы (II) подвергают обработке с целью защиты спиртовых групп защитными группами R1 и R2

Изобретение относится к способу получения сложного эфира формулы (1) где R1 представляет собой уходящую группу, CN, ОН или группу COOR5 , R3 и R4, каждый независимо, представляют собой C1-3алкильную группу, и R2 и R5 , каждый независимо, представляют собой сложноэфирный остаток, при котором соответствующую соль формулы (2) где М представляет собой Н или щелочной (щелочно-земельный) металл, приводят в контакт с хлорангидрид-образующим агентом в инертном растворителе с образованием соответствующего хлорангидрида и этот хлорангидрид приводят в контакт со спиртом формулы R 2OH в присутствии N-метил-морфолина (N-MM)
Наверх