Способ получения разветвленных насыщенных углеводородов

 

Изобретение относится к области органической химии, в частности, к способу получения разветвленных насыщенных углеводородов, которые могут быть использованы для повышения октанового числа. Сущность: насыщенные углеводороды общей формулы где R = n - C4H9, n - C5H11, n - C9H19, получают гидроалкилированием -олефинов в присутствии катализатора. При этом алкилзамещенные -олефины RCH= CH2 (гептен-1, ундецен-1, додецен-1) взаимодействуют с трет-бутилбромидом (t-BuBr) в присутствии триэтилалюминия (Et3Al) и титаноцендихлорида (Ср2TiCl2) в качестве катализатора в мольном соотношении, равном RCH=CH : t-BuBr : Et3Al : Cp2TiCl2=10 : (15-25) : (15-25) : (0,1-0,5) при нормальных условиях, в атмосфере инертного аргона в среде гексана при перемешивании в течение 6-8 ч с последующим гидролизом реакционной массы 10%-ным раствором соляной кислоты. Технический результат: новый способ позволяет получать целевой продукт с выходом 72-90%. 1 табл.

Изобретение относится к области органической химии, конкретно, к способу гидроалкилирования -олефинов, приводящему к получению разветвленных насыщенных углеводородов общей формулы (1): где R=n-C4H9, n-C5H11, n-C9H19.

Указанные углеводороды могут найти применение в качестве компоненты высокосортных автомобильных бензинов для повышения октанового числа.

Известен способ (Г. А. Григорян. Успехи химии. 1984. Т.53. С.347) гидроалкилирования этилена с помощью метана под действием катализатора Ti(C4H9O)4-Еt3Al по схеме: Известный способ не позволяет получать разветвленные углеводороды.

Известен способ (J. Terao, Т. Watanabe, К. Saito, N. Kambe and N. Sonoda, Tetrahedron. Lett., 1998, 39, 9201) гидроалкилирования арилэтиленов с помощью алкилбромидов, -тозилатов и -сульфатов по схеме: X=Br, OTs, OSO3R Известный способ не позволяет проводить гидроалкилирование алкилзамещенных -олефинов.

Предлагается новый способ гидроалкилирования -олефинов для получения разветвленных насыщенных углеводородов.

Сущность метода заключается во взаимодействии алкилзамещенных -олефинов (гептен-1, ундецен-1, додецен-1) с трет-бутилбромидом (t-BuBr) в присутствии триэтилалюминия (Et3Al) и каталитических количеств титаноцендихлорида (Cp2TiCl2), взятых в мольном соотношении 10: (15-25):(15-25):(0,1-0,5), преимущественно 10: 20: 20:0,3 при комнатной температуре (22-23oС) и атмосферном давлении в гексане при перемешивании в течение 6-10 ч, преимущественно 8 ч с последующим гидролизом реакционной массы 10% раствором НСl. Получают разветвленные насыщенные углеводороды общей формулы (1) с выходом 72-90%:

Использование в указанной реакции меньших количеств Et3Al или трет-бутилбромида приводит к снижению выхода целевого продукта 1. Использование в реакции больших количеств трет-бутилбромида или Еt3А1 не приводит к существенному увеличению выхода целевого продукта 1. При более высокой температуре (например, 50oС) выход целевых продуктов снижается за счет образования побочных продуктов, а при меньшей температуре (например, 0oС) снижается скорость реакции.

Без триэтилалюминия или без трет-бутилбромида реакция не идет. В отсутствие катализатора титаноцендихлорида (Cp2ТiCl2) целевой продукт 1 не образуется.

Существенные отличия предлагаемого способа от известного.

1. В известном способе используются арилзамещенные олефины, магнийорганический реагент (BunMgBr) и катализатор Ср2ZrCl2, в то время как в предлагаемом алкилзамещенные олефины, алюминийорганический реагент (Et3Al) и катализатор Cp2TiCl2.

2. Предлагаемый способ позволяет получать разветвленные алифатические углеводороды, тогда как в известном способе получаются ароматические углеводороды.

Преимущества предлагаемого способа.

1. В отличие от известных способов предлагаемый позволяет получать 2,3-диметилзамещенные углеводороды 1 из -олефинов с высокими выходами в одну стадию.

Способ поясняется примерами.

ПРИМЕР 1.

В стеклянный реактор объемом 100 мл, погруженный в ледяную баню и установленный на магнитной мешалке, в атмосфере инертного газа последовательно загружали 10 мл гексана, 10 ммоль ундецена-1, 20 ммоль Et3Al, 20 ммоль t-BuBr, 0,3 ммоль Cp2TiCl2, перемешивали 8 ч при комнатной температуре (22-23oС). По окончании реакции реакционную массу гидролизировали 10% водным раствором НCl, водный слой экстрагировали диэтиловым эфиром, соединяли с органическим слоем и выдерживали над безводным СаСl2. Из органического слоя выделяли 2,3-диметилтридекан с выходом 84%.

Спектральные характеристики 2,3-диметилтридекана:

Т. кип. 110oС (5 Торр). Найдено (%): С, 84,79; Н, 15,13. C15H32. Вычислено (%): С, 84,52; Н, 15,48.

Спектр ЯМР 13С (CDCl3, , м. д.): 20,33 (С(1)), 32,10 (С(2)), 38,67 (С(3)). 34,31 (С(4)), 27,74 (С(5)), 30,21 (С(6)), 29,89 (С(7)), 29,89 (С(8)), 29,50 (С(9)), 29,50 (C(10)), 32,10 (С(11)), 22,80 (С(12)), 14,22 (С(13)), 18,05 (С(14)), 15,60 (С(15)).

Спектр ЯМР 1Н (CDCl3, , м.д., J/Гц): 0,81 (т, 6Н, C(13,15)H3, 3JCH= 5,13), 0,85 (д, 6Н, С(1,14)Н3, 3JCH=6,34), 1,07-1,75 (м, 20Н, С(2,3)Н, С(4-12)Н2).

Масс-спектр, m/z (I, %): 171(10) [М-С3Н7]+, 170(15), 115(7), 101(9), 87(10), 85(7), 73(69), 59(100).

Другие примеры, подтверждающие способ, приведены в таблице.

Все опыты проводили при комнатной температуре (22-23oС). В качестве растворителя использовали гексан в количестве 50 мл.


Формула изобретения

Способ получения разветвленных насыщенных углеводородов общей формулы

где R=n-C4H9, n-C5H11, n-C9H19,
отличающийся тем, что алкилзамещенные -олефины RCH= CH2 (гексен-1, гептен-1, ундецен-1) подвергают взаимодействию с трет-бутилбромидом (t-BuBr) в присутствии триэтилалюминия (Et3A1) и титаноцендихлорида (Ср2TiCl2), взятыми в мольном соотношении RCH=CH2: t-BuBr: Et3A1:Cp2TiCl2=10: (15-25): (15-25): (0,1-0,5) при нормальных условиях, в атмосфере аргона в среде гексана при перемешивании в течение 6-8 ч с последующим гидролизом реакционной массы 10%-ным раствором соляной кислоты.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к твердым формованным катализаторам, легко отделяемым от реагентов и повторно используемым в реакциях алкилирования, этерификации и изомеризации

Изобретение относится к способу получения 1,2-диалкил-1,2-диэтилциклопропанов общей формулы 1, где R1 и R2 соответственно равны n-Pr, n-Pr; n-Bu, n-Bu; Me, n-C5H11, которые могут быть использованы в качестве основной компоненты высокоэнергетических горючих, для получения противовирусных лекарственных препаратов, пестицидов, низкомолекулярных биорегуляторов

Изобретение относится к способу получения 1,2-диалкил-1Z,3-бутадиенов общей формулы I, где R=n-Pr, n-Bu, которые могут быть использованы в процессах полимеризации, диенового синтеза, а также в качестве полупродуктов в лакокрасочной промышленности

Изобретение относится к области органической химии, в частности к способу получения 1-алкил-1,2-диэтилциклопропанов формулы I, где R - n-С4Н9, n-С5Н11, n-С10Н21, которые могут быть использованы для получения составной компоненты высокоэнергетических горючих, противовирусных препаратов, пестицидов, низкомолекулярных биорегуляторов

Изобретение относится к способу получения (Z)-1,2-диалкилэтилэтиленов общей формулы 1, где R=n-C3H7, n-C4H9

Изобретение относится к получению изопрена, применяемого в качестве мономера в производстве синтетического каучука

Изобретение относится к получению изопрена, применяемого при производстве синтетического каучука

Изобретение относится к получению изопрена, применяемого в качестве мономера в производстве синтетического каучука

Изобретение относится к способу получения замещенных или незамещенных 1,7-диолефинов формулы (9) ,в которой R7-R12 независимо друг от друга обозначают водород, алкил с 1-4 атомами углерода или галоген, гидродимеризацией нециклических олефинов с, по меньшей мере, двумя сопряженными двойными связями в присутствии восстановителя и катализатора, характеризующемуся тем, что в качестве восстановителя используют муравьиную кислоту и/или формиаты, а в качестве катализатора используют карбеновый комплекс металла, который содержит металл от 8-й до 10-й групп периодической системы элементов и, по меньшей мере, один карбеновый лиганд формулы (1) или (2): в которой R1, R2 означают -(СН2)n-В, В означает моноциклическую или полициклическую арильную группу с 6-14 атомами углерода или моноциклический или полициклический гетероцикл с 5-14 атомами углерода и гетероатомами, который содержит от 1 до 3 гетероатомов, выбранных из группы, включающей азот, кислород и серу, n означает число от 0 до 4, R3, R4, R5 и R6 означают водород, алкил, гетероарил, арил, -CN, -СООН, -СОО-алкил, -СОО-арил, -ОСО-алкил, -ОСО-арил, -ОСОО-алкил, -ОСОО-арил, -СНО, -СО-алкил, -СО-арил, -NH2, -NH(алкил), -N(алкил)2, -NH(арил), -N(арил)2, фтор, хлор, бром, йод, -ОН, -CF3, -NO2, -ферроценил, -SO3H или -РО3Н2, причем алкил означает алкильную группу с 1-12 атомами углерода, арил означает арильную группу с 5-14 атомами углерода, и заместители R 3 и R4 могут быть также частью связанного мостиком алифатического или ароматического кольца, причем заместители R1 и R2 могут быть одинаковыми или разными, замещенными или незамещенными, и заместители R3, R 4, R5 и R6 также могут быть одинаковыми или разными, замещенными или незамещенными
Наверх