Способ измерения числа отрицательных ионов различной подвижности и устройство для его реализации

 

Использование: для контроля радиоактивности окружающей среды. Сущность: в способе измерения числа отрицательных ионов в цилиндрическом ионизационном детекторе, заполненном воздухом, вблизи заряженной положительно нити создают напряженность электрического поля, достаточную для отрыва электрона от отрицательного иона и для ионизации газа электронным ударом. По расстоянию от входа иона в детектор до области его регистрации на нити определяют подвижность отрицательного иона. Устройство включает в себя цилиндрический ионизационный детектор, воздуходувку, электростатический фильтр, источник запирающего фильтр напряжения, источник высокого напряжения, регистрирующую электрические импульсы электронную схему. Технический результат: раздельная регистрация отрицательных ионов различной подвижности. 2 с. и 2 з.п.ф-лы, 1 ил.

Способ относится к ядерной физике и технике и может быть использован при создании детекторов для контроля радиоактивности окружающей среды.

Известен способ измерения концентрации ионов, в котором используется цилиндрическая ионизационная камера, измеряется ток насыщения, образуемый ионами, содержащимися в просасываемом через камеру исследуемом воздухе (Физический энциклопедический словарь. Т. 2. - М.: Советская энциклопедия, 1962).

Наиболее близким техническим решением (прототип) является способ измерения концентрации ионов в воздухе путем измерения ионизационного тока в цилиндрической ионизационной камере с внутренним и внешними электродами, работающей при различных напряжениях, при различных скоростях прокачки газа, различных напряжениях между электродами и различных постоянных времени выходной цепи, с последующей математической обработкой (Таммет Х.Ф. Уч. записки Тартусского госуниверситета. Тарту, в 136, с. 103-110, 1962). Недостатком аналога и прототипа является то, что они не позволяют измерять число ионов, а позволяют измерять только суммарный ионизационный ток, обусловленный движением большого числа ионов различной подвижности к электродам камеры. Это не позволяет раздельно определять число ионов различной подвижности, дающих суммарный ионизационный ток.

Целью изобретения является создание способа измерения числа отрицательных ионов в данном объеме воздуха и измерении их подвижности. Цель достигается тем, что вблизи внутреннего электрода камеры, на который подают положительный заряд, создают напряженность электрического поля, достаточную для того, чтобы отрицательные ионы в столкновениях с атомами газа отдавали электроны (более 70 кВ/см). Образующиеся свободные электроны, двигаясь к положительно заряженному внутреннему электроду, в процессе ударной ионизации создают электронно-фотонные лавины, которые регистрируют электронной схемой. Экспериментально показано, что образовавшиеся электронно-фотонные лавины в воздухе локализованы на малом участке нити (порядка нескольких мкм). Это позволяет определить координату отрицательного иона вдоль нити, измеряя сигналы с двух противоположных концов нити. Сопротивление нити выбирают достаточно большим (несколько килоом). Отношение амплитуд сигналов, снимаемых с двух противоположных концов нити, пропорционально отношению сопротивлений участков нити от точки регистрации иона до соответствующего конца. Достигнутое координатное разрешение составляет менее 0,1 мм.

Технический результат заключается в осуществлении раздельной регистрации отрицательных ионов различной подвижности.

Технический результат достигается за счет того, что отрицательные ионы с разной подвижностью при прокачке воздуха через камеру регистрируются на различных расстояниях от входа.

При объемной скорости прокачки W cм3/c подвижность регистрируемых ионов определяется по формуле (Рузер Л.С. Радиоактивные аэрозоли. Москва, 1968, с. 191) где - подвижность ионов, см2/(Вс); U - напряжение между электродами, В; rк и ra - радиусы катода и анода соответственно; x - расстояние от входа иона в камеру до места его регистрации на нити, см. Расстояние x измеряется с точностью ~ 10-2 см.

При длине нити 16 см и скорости прокачки несколько литров в минуту способ позволяет измерять концентрацию ионов с подвижностью в пределах от 1 до 10-4 см2/(сВ).

Напряженность электрического поля уменьшается по мере удаления от нити, поэтому образовавшиеся электронно-фотонные лавины затухают. Коэффициент газового усиления m выбирают так, чтобы выполнялось неравенство eN-<1,e - вероятность отрыва электрона от отрицательного иона, а N- - среднее число вторичных отрицательных ионов, возникающих в объеме детектора в процессе газового усиления.

Для исключения регистрации вторичных отрицательных ионов при больших m включают схему гашения, обычно применяемую в счетчиках Гейгера для исключения регистрации ложных импульсов, изменяющую потенциал нити на время -++ до значений, при которых не происходит процесс ударной ионизации и электронно-фотонные лавины не возникают (здесь - - максимальное время дрейфа отрицательного иона от места своего образования до нити, а + - максимальное время дрейфа положительного иона от места своего образования до катода).

При включенной схеме гашения вторичные отрицательные ионы, образующиеся после регистрации первичного иона, в газовом разряде не регистрируются, так как за время -++ они нейтрализуются на положительно заряженной нити.

Диапазон измеряемых концентраций отрицательных ионов в воздухе составляет 2102 - 106 ионов/см3.

Для увеличения чувствительности способа используют режим "ионного умножения" в воздушной цилиндрической камере с газовым усилением - m. Режим ионного умножения создают, выбирая напряжение между электродами камеры - U, диаметр нити - 2ra и коэффициент газового усиления - m так, чтобы число вторичных ионов N-, образующихся в газовом разряде в результате регистрации первичного отрицательного иона, было достаточно для возникновения от одного до нескольких сотен электрических импульсов. При этом необходимо выполнение неравенства N-e<1, где e - вероятность отрыва электрона от отрицательного иона. Коэффициент умножения Кy определяется по формуле где Кy - число электрических импульсов, возникающих при регистрации одного отрицательного иона. Очевидно, что при eN-<<1 коэффициент умножения Кy = 1. При этом число ионов определяется из условия

Величина e зависит от разности потенциалов U и составляет в работающем макете величину порядка 10-4 - 10-3.

Способ реализован с помощью устройства для определения числа отрицательных ионов различной подвижности, состоящее из 1 - цилиндрического ионизационного детектора, 2 - воздуходувки со скоростью прокачки Vпр, 3 - электростатического фильтра длиной L, расстоянием между электродами l и напряженностью электрического поля Е, 4 - источника запирающего фильтр напряжения, 5 - источника высокого напряжения, 6 - регистрирующей электрические импульсы электронной схемы.

Устройство работает следующим образом. От источника высокого напряжения 5 подается на нить напряжение, достаточное для того, чтобы напряженность электрического поля вблизи нити была достаточной для отрыва электрона от отрицательного иона и для ударной ионизации. Затем от источника 4 подается запирающее фильтр напряжение. При продувке воздуха через устройство пройдут только ионы, подвижность которых удовлетворяет условию

где Vпр - см/с, Ез - напряженность запирающего электрического поля, L - длина электростатического фильтра, l - расстояние между электродами.


Формула изобретения

1. Способ определения числа отрицательных ионов различной подвижности, заключающийся в измерении ионизации газа с помощью детектора, имеющего внутренний, заряженный положительно, и внешний электроды, отличающийся тем, что в объеме детектора вблизи внутреннего электрода в виде нити создают область с напряженностью электрического поля, достаточной для отрыва электрона от отрицательного иона и ударной ионизации газа, регистрируют место образования электронно-фотонной лавины по отношению амплитуд двух сигналов, снимаемых с противоположных концов нити, определяют число отрицательных ионов с подвижностью прошедших через электростатический фильтр длиной L при скорости прокачки Vпр и l - расстояние между двумя плоскими электродами электростатического фильтра.

2. Способ измерения числа отрицательных ионов различной подвижности по п. 1, отличающийся тем, что для исключения регистрации отрицательных ионов, возникающих в газовом разряде после регистрации первичного иона, включают схему гашения, изменяющую потенциал нити до значений, при которых не происходит процесс ударной ионизации на максимальное время дрейфа положительных и отрицательных ионов к электродам.

3. Способ измерения числа отрицательных ионов различной подвижности по п. 1, отличающийся тем, что для увеличения чувствительности используют режим "ионного умножения" в воздушном цилиндрическом детекторе с газовым усилением.

4. Устройство для определения числа отрицательных ионов различной подвижности, состоящее из l - цилиндрического ионизационного детектора, 2 - воздуходувки со скоростью прокачки Vпр, 3 - электростатического фильтра длиной L, расстоянием между электродами 1 и напряженностью электрического поля - Е, 4 - источника запирающего фильтр напряжения, 5 - источника высокого напряжения, 6 - регистрирующей электрические импульсы электронной схемы.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к ядерной энергетике, в частности к системам управления и контроля ядерных реакторов, и предназначено для технического диагностирования ионизационных камер (ИК)

Изобретение относится к матричным детекторам ионизации газа для радиографических исследований рентгеновского или -излучения высокой энергии и основано на эффекте ионизации вторичных электронов, образуемых при взаимодействии излучения с рабочим газом под давлением

Изобретение относится к области средств обнаружения и контроля ядерного излучения, конкретно к приборам для осуществления постоянного контроля содержания трития в воздухе, и может быть использовано для контроля радиационной обстановки, обусловленной тритием, на предприятиях и объектах, хранящих или ведущих работы с тритием

Изобретение относится к области технической физики, а точнее - к области регистрации нейтронов

Изобретение относится к экспонометрии и предназначено преимущественно для промышленной рентгенографии материалов и изделий, в частности к ионизационным камерам рентгеноэкспонометров, используемым при производстве снимков с заданной плотностью почернения рентгеновской пленки

Изобретение относится к технической физике, точнее - к области регистрации нейтронов

Изобретение относится к исследованию макромолекул для определения массы макромолекул, включая белки, большие пептиды, длинные ДНК-фрагменты и полимеры

Изобретение относится к области аналитического приборостроения и может найти применение в таких анализаторах состава газа, как электронозахватный детектор (ЭЗД), спектрометр ионной подвижности или масс-спектрометр, в которых используются отрицательные ионы

Изобретение относится к области анализа материалов

Изобретение относится к способам и материалам катода для обнаружения и анализа следовых количеств органических молекул взрывчатых, наркотических или физиологически активных веществ в атмосфере воздуха путем ионизации указанных молекул на нагретой поверхности катода, выполненного из электропроводного материала, последующей регистрации электрического тока, инициированного в воздушном зазоре между катодом и дополнительным электродом-коллектором ионов образовавшимися на поверхности катода ионами, в цепи катода или коллектора ионов, и может быть использовано при создании стационарных, переносных и портативных приборов для регистрации наличия в атмосфере воздуха указанных типов органических молекул, а также для идентификации органических молекул путем анализа ионного тока

Изобретение относится к области аналитического приборостроения и может найти применение в конструкции электронозахватного детектора

Изобретение относится к области ядерной физики и техники и может быть использовано при создании детекторов для контроля окружающей среды

Изобретение относится к методам оперативного измерения концентрации водорода в смесях газов азота и кислорода или воздуха неизвестной концентрации, в том числе при взрывоопасных концентрациях

Изобретение относится к области газового анализа и предназначено для обнаружения микропримесей веществ в газовых средах, в частности атмосферном воздухе

Изобретение относится к газовому анализу, предназначено для определения концентрации микропримесей веществ в газовых средах, в частности в атмосферном воздухе

Изобретение относится к газовому анализу и может быть использовано для решения задач охраны окружающей среды, санитарно-гигиенического контроля и т.п
Наверх