Слоистый защитный экран

 

Изобретение может быть использовано в разных отраслях техники для защиты электронных приборов и обслуживающего персонала от воздействия электромагнитного излучения (ЭМИ) радиочастотного диапазона. Технической задачей изобретения является уменьшение доли отраженного от слоистого защитного экрана радиочастотного излучения. Поставленная техническая задача достигается тем, что предложенный слоистый защитный экран, прозрачный в видимом свете, содержит по крайней мере один дополнительный слой прозрачного диэлектрического материала, который расположен либо на свободной от электропроводящего слоя поверхности экрана, либо на поверхности электропроводящего слоя либо по обе стороны защитного экрана расположено по крайней мере по одному дополнительному слою прозрачного диэлектрического материала. Величина диэлектрической проницаемости прозрачных диэлектрических слоев уменьшается по мере удаления от электропроводящего слоя, а величина поверхностного сопротивления электропроводящего слоя составляет 30-60 Ом/квадрат. 4 з.п.ф-лы, 1 ил., 1 табл.

Изобретение относится к области радиотехники, в частности к области защиты приборов и обслуживающего персонала от воздействия электромагнитного излучения (ЭМИ) радиочастотного диапазона, и может использоваться в машиностроении, микроэлектронике, авиационной и других отраслях промышленности для ослабления ЭМИ радиочастотного диапазона как от внешних, так и от внутренних источников излучения.

Известно устройство, содержащее слой оптически прозрачного материала, на внешней стороне которого расположен тонкий слой электропроводящего материала. Устройство предназначено для защиты электронных приборов от действия внешнего электромагнитного излучения [1].

Недостатком данного устройства является большая доля отраженного от экрана радиочастотного излучения.

Наиболее близким аналогом, взятым за прототип, является защитный экран видеодисплейного терминала для ослабления электромагнитного излучения, содержащий слой прозрачного диэлектрического материала, на одну поверхность которого нанесен тонкий слой электропроводящего материала, имеющий контакт с элементом заземления [2].

Недостатком данного защитного экрана является большая доля отраженного от экрана радиочастотного излучения.

Технической задачей изобретения является уменьшение доли отраженного от слоистого защитного экрана радиочастотного излучения при сохранении его прозрачности в видимом свете.

Поставленная техническая задача достигается тем, что предложенный слоистый защитный экран содержит, по крайней мере, один дополнительный слой прозрачного диэлектрического материала, причем, по крайней мере, один дополнительный слой прозрачного диэлектрического материала расположен либо на свободной от электропроводящего слоя поверхности экрана, либо на поверхности электропроводящего слоя либо по обе стороны защитного экрана расположено, по крайней мере, по одному дополнительному слою прозрачного диэлектрического материала. Величина диэлектрической проницаемости прозрачных диэлектрических слоев уменьшается по мере удаления от электропроводящего слоя, а величина поверхностного сопротивления электропроводящего слоя составляет 30...60 Ом/квадрат. Толщины прозрачных диэлектрических слоев защитного экрана выбирают в зависимости от величины их диэлектрической проницаемости.

На фиг. 1 (а, б, в, г) показаны примеры реализации предлагаемого устройства слоистого защитного экрана.

Устройство содержит прозрачный диэлектрический слой 1, на одну из сторон которого нанесен электропроводящий слой 2, имеющий электрический контакт с элементом заземления 3, и, по крайней мере, один дополнительный слой прозрачного диэлектрического материала 4 (5, 6).

Фиг. 1a - дополнительный слой 4 прозрачного диэлектрического материала расположен на поверхности электропроводящего слоя.

Фиг. 1б - дополнительный слой 4 прозрачного диэлектрического материала расположен на свободной от электропроводящего слоя поверхности экрана.

Фиг. 1в - по обе стороны экрана расположено по одному дополнительному слою 4 и 5 прозрачного диэлектрического материала.

Фиг. 1г - дополнительный слой 4 прозрачного диэлектрического материала расположен на свободной от электропроводящего слоя поверхности экрана и дополнительные слои 5 и 6 прозрачных диэлектрических материалов расположены со стороны электропроводящего слоя. Количество дополнительных слоев прозрачных диэлектрических материалов может быть увеличено.

Устройство работает следующим образом (см. Фиг.1а). Электромагнитное излучение 7 радиочастотного диапазона, падающее на защитный экран, частично проходит через него 9, частично отражается 8 от границ раздела: воздух - крайние слои экрана и границ раздела слоев внутри экрана, а также частично поглощается в электропроводящем покрытии. При этом значительная доля падающего излучения 7, прошедшего внутрь конструкции экрана, претерпевает переотражение от вышеуказанных границ раздела слоев защитного экрана, оставаясь внутри конструкции и многократно проходя через поглощающее электропроводящее покрытие. В результате возрастает доля поглощенного излучения.

В таблице приведены сравнительные характеристики вариантов реализации слоистого защитного экрана в сравнении с прототипом для трех значений величины поверхностного сопротивления электропроводящего слоя.

Твид - интегральное пропускание видимого света; Тэми - коэффициент пропускания защитного экрана в диапазоне частот электромагнитного излучения 10-20 ГГц; R1 и R2 - коэффициенты отражения от двух сторон защитного экрана в диапазоне частот электромагнитного излучения 10-20 ГГц, см. фиг.1г.

Образцы 1.1-1.6 были выполнены по схеме, показанной на фиг.la.

Образец 1.1 - Величина диэлектрической проницаемости диэлектрического слоя 1 равна 7,8; поверхностное сопротивление электропроводящего слоя - 30 Ом/квадрат. Величина диэлектрической проницаемости диэлектрического слоя 4 равна 7,8.

Образец 1.2 - Величина диэлектрической проницаемости диэлектрического слоя 1 равна 7,8; поверхностное сопротивление электропроводящего слоя - 30 Ом/квадрат. Величина диэлектрической проницаемости диэлектрического слоя 4 равна 2,8.

Образец 1.3 - Величина диэлектрической проницаемости диэлектрического слоя 1 равна 7,8; поверхностное сопротивление электропроводящего слоя - 40 Ом/квадрат. Величина диэлектрической проницаемости дополнительного диэлектрического слоя 4 равна 7,8.

Образец 1.4 - Величина диэлектрической проницаемости диэлектрического слоя 1 равна 7,8; поверхностное сопротивление электропроводящего слоя - 40 Ом/квадрат. Величина диэлектрической проницаемости дополнительного диэлектрического слоя 4 равна 2,8.

Образец 1.5 - Величина диэлектрической проницаемости диэлектрического слоя 1 равна 7,8; поверхностное сопротивление электропроводящего слоя - 60 Ом/квадрат. Величина диэлектрической проницаемости дополнительного диэлектрического слоя 4 равна 7,8.

Образец 1.6 - Величина диэлектрической проницаемости диэлектрического слоя 1 равна 7,8; поверхностное сопротивление электропроводящего слоя - 60 Ом/квадрат. Величина диэлектрической проницаемости дополнительного диэлектрического слоя 4 равна 2,8.

Образцы 2.1-2.3 были выполнены по схеме, показанной на фиг.1б.

Образец 2.1 - Величина диэлектрической проницаемости диэлектрического слоя 1 равна 7,8; поверхностное сопротивление электропроводящего слоя - 30 Ом/квадрат. Величина диэлектрической проницаемости дополнительного диэлектрического слоя 4 равна 2,8.

Образец 2.2 - Величина диэлектрической проницаемости диэлектрического слоя 1 равна 7,8; поверхностное сопротивление электропроводящего слоя - 40 Ом/квадрат. Величина диэлектрической проницаемости дополнительного диэлектрического слоя 4 равна 2,8.

Образец 2.3 - Величина диэлектрической проницаемости диэлектрического слоя 1 равна 7,8; поверхностное сопротивление электропроводящего слоя - 60 Ом/квадрат. Величина диэлектрической проницаемости дополнительного диэлектрического слоя 4 равна 2,8.

Образцы 3.1-3.3 были выполнены по схеме, приведенной на фиг.1в.

Образец 3.1 - Величина диэлектрической проницаемости диэлектрического слоя 1 равна 7,8; поверхностное сопротивление электропроводящего слоя - 30 Ом/квадрат. Величина диэлектрической проницаемости дополнительного диэлектрического слоя 4 равна 2,8. Величина диэлектрической проницаемости дополнительного диэлектрического слоя 5 равна 7,8.

Образец 3.2 - Величина диэлектрической проницаемости диэлектрического слоя 1 равна 7,8; поверхностное сопротивление электропроводящего слоя - 40 Ом/квадрат. Величина диэлектрической проницаемости дополнительного диэлектрического слоя 4 равна 2,8. Величина диэлектрической проницаемости дополнительного диэлектрического слоя 5 равна 7,8.

Образец 3.3 - Величина диэлектрической проницаемости диэлектрического слоя 1 равна 7,8; поверхностное сопротивление электропроводящего слоя - 60 Ом/квадрат. Величина диэлектрической проницаемости дополнительного диэлектрического слоя 4 равна 2,8. Величина диэлектрической проницаемости дополнительного диэлектрического слоя 5 равна 7,8.

Образцы 4.1-4.3 были выполнены по схеме, показанной на фиг.1г.

Образец 4.1 - Величина диэлектрической проницаемости диэлектрического слоя 1 равна 7,8; поверхностное сопротивление электропроводящего слоя - 30 Ом/квадрат. Величина диэлектрической проницаемости дополнительного диэлектрического слоя 4 равна 2,8. Величина диэлектрической проницаемости дополнительного диэлектрического слоя 5 равна 7,8. Величина диэлектрической проницаемости дополнительного диэлектрического слоя 6 равна 2,8.

Образец 4.2 - Величина диэлектрической проницаемости диэлектрического слоя 1 равна 7,8; поверхностное сопротивление электропроводящего слоя - 40 Ом/квадрат. Величина диэлектрической проницаемости дополнительного диэлектрического слоя 4 равна 2,8. Величина диэлектрической проницаемости дополнительного диэлектрического слоя 5 равна 7,8. Величина диэлектрической проницаемости дополнительного диэлектрического слоя 6 равна 2,8.

Образец 4.3 - Величина диэлектрической проницаемости диэлектрического слоя 1 равна 7,8; поверхностное сопротивление электропроводящего слоя - 60 Ом/квадрат. Величина диэлектрической проницаемости дополнительного диэлектрического слоя 4 равна 2,8. Величина диэлектрической проницаемости дополнительного диэлектрического слоя 5 равна 7,8. Величина диэлектрической проницаемости дополнительного диэлектрического слоя 6 равна 2,8.

Как видно из таблицы, использование предлагаемого слоистого защитного экрана позволяет уменьшить уровень отраженного электромагнитного излучения радиочастотного диапазона за счет увеличения его поглощения, при этом доля прошедшего через устройство излучения не увеличивается. В результате достигается уменьшение уровня электромагнитного излучения, оказывающего вредное воздействие на обслуживающий персонал и чувствительные к электромагнитному излучению приборы, по обе стороны от прозрачного слоистого защитного экрана.

Литература 1. США патент 5373102.

2. США патент 5122619.

Формула изобретения

1. Слоистый защитный экран, прозрачный в видимом свете, содержащий слой прозрачного диэлектрического материала, на одну поверхность которого нанесен электропроводящий слой, имеющий контакт с элементом заземления, отличающийся тем, что введен по крайней мере один дополнительный слой прозрачного диэлектрического материала, при этом величина поверхностного сопротивления электропроводящего слоя составляет 30 - 60 Ом/квадрат.

2. Слоистый защитный экран по п.1, отличающийся тем, что по крайней мере один дополнительный слой прозрачного диэлектрического материала расположен на свободной от электропроводящего слоя поверхности экрана.

3. Слоистый защитный экран по п.1, отличающийся тем, что по крайней мере один дополнительный слой прозрачного диэлектрического материала расположен на поверхности электропроводящего слоя.

4. Слоистый защитный экран по п.1, отличающийся тем, что по обе стороны экрана расположено по крайней мере по одному дополнительному слою прозрачного диэлектрического материала.

5. Слоистый защитный экран по любому из пп.1-4, отличающийся тем, что величина диэлектрической проницаемости слоев прозрачных диэлектрических материалов уменьшается по мере удаления от электропроводящего слоя.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к области техники СВЧ

Изобретение относится к способам маскировки войск и объектов и может быть использовано для имитации в радиолокационном диапазоне длин волн и защиты от высокоточного оружия протяженных линейных объектов в зимних условиях

Изобретение относится к маскировке, в частности к маскировочным покрытиям для снижения заметности наземных объектов в различных диапазонах длин волн

Изобретение относится к области радиолокационной техники и может быть использовано для снижения уровня обратного радиолокационного отражения от воздухозаборника самолетного двигателя

Изобретение относится к области радиотехники, а именно к поглотителям электромагнитного излучения для безэховых камер, используемых для испытания бытовых радио-, теле- и других электротехнических устройств

Изобретение относится к устройствам для поглощения излучаемых антенной радиоволн и может быть использовано в наземной, наводной, авиационной и космической технике для уменьшения радиолокационной заметности объектов

Изобретение относится к поглотителям электромагнитных волн (ЭМВ) в диапазоне сверхвысоких частот (СВЧ) и может быть использовано для уменьшения радиолокационной видимости объектов различного назначения и конфигурации

Изобретение относится к радиотехнике, в частности к устройствам для поглощения электромагнитных волн

Изобретение относится к области электротехники, а именно к области создания и эксплуатации электрических машин, и может быть использовано при создании и эксплуатации электрических двигателей, электрических генераторов, а также трансформаторов

Изобретение относится к средствам защиты биологического объекта от излучения электронно-лучевой трубки и жидкокристаллического экрана, активно влияющих на состояние биологического объекта, и может быть использовано для защиты биологических объектов, находящихся в зоне действия устройств, содержащих электронно-лучевые трубки и жидкокристаллические экраны

Изобретение относится к области физики процессов распространения электромагнитных полей в конденсированных средах, а именно к устройствам для защиты от электромагнитного излучения

Изобретение относится к способу подавления излучения радиочастотной энергии от электропривода, содержащего электронный контроллер и электрический двигатель, и к электроприводу, предназначенному для работы в соответствии с изобретением

Изобретение относится к устройствам защиты от внешнего магнитного поля системы вращательного привода относительно одной оси двух механических органов посредством магнитного сцепления

Изобретение относится к устройствам для защиты здоровья людей от вредного воздействия неионизирующих электромагнитных факторов, создаваемых видеомониторами, и может быть использовано на рабочем месте пользователя компьютерной техникой

Изобретение относится к экранирующему элементу для повышения электромагнитной совместимости электрических, в частности, электронных функциональных узлов и к способу изготовления такого экранирующего элемента

Изобретение относится к способу изготовления корпуса с электромагнитным экранированием согласно ограничительной части п

Изобретение относится к области создания технических средств - электротехнических, электронных и радиоэлектронных изделий, оборудования, аппаратуры и их составных частей, а именно к направлению обеспечения электромагнитной совместимости (ЭМС), и может быть использовано при испытаниях по определению устойчивости к воздействию электромагнитных полей (ЭМП) изделий бытовой техники, корабельной, авиационной, ракетной техники, автомобильной промышленности, а также атомной энергетики и др
Наверх