Спеченный алюминиевый сплав

 

Изобретение относится к порошковой металлургии и может быть использовано в приборостроении для изготовления слабонагруженных и ненагруженных деталей, например радиаторов охлаждения полупроводниковых приборов, подошвы электрического утюга и др., а также в качестве электроконтактного материала. Спеченный алюминиевый сплав содержит медь при следующем соотношении компонентов, мас. %: медь 30-55; алюминий - остальное, и спечен при температуре 500-550oС. Технический результат - удешевление производства спеченного алюминиевого сплава за счет экономии энергии, затрачиваемой на операцию спекания. 1 табл.

Предлагаемое изобретение относится к области порошковой металлургии цветных металлов, а именно к способам изготовления спеченных сплавов алюминия с медью.

Известны спеченные алюминиевые сплавы, содержащие медь и другие легирующие элементы, используемые в качестве конструкционных деталей неответственного назначения (Савицкий А.П., Гопиенко В.Г. и др. Технологические процессы получения порошковых алюминиевых материалов. - ЦНИИцветмет экономики и информации. М., 1983, 60 с.).

Из описанных в литературе спеченных алюминиевых сплавов, наиболее близким к заявляемому по составу компонентов является способ изготовления спеченного алюминиевого сплава марки 202АВ фирмы "Алкоа", содержащий 4,0% меди, остальное алюминий до 100% (Савицкий А.П., Гопиенко В.Г. и др. Технологические процессы получения порошковых алюминиевых материалов. - ЦНИИцветмет экономики и информации. М., 1983, 60 с.).

Недостатком спеченного алюминиевого сплава марки 202АВ, как и других спеченных сплавов на основе алюминия, например 601АВ, МД22, являются относительно высокие для алюминия температуры спекания (590-625oС) и достаточно продолжительная выдержка при температуре спекания (0,5-1,0 час).

Задачей предлагаемого изобретения является удешевление производства спеченного алюминиевого сплава за счет экономии энергии, затрачиваемой на операцию спекания.

Техническое решение задачи достигается тем, что известные компоненты спеченного алюминиевого сплава используются в следующем соотношении (мас.%): Медь - 30-55 Алюминий - Остальное Предлагаемое решение основано на том, что при диффузионном взаимодействии алюминия и меди вследствие смешения компонентов выделяется тепло (Савицкий А. П. , Емельянова М.А., Бурцев Н.Н. Объемные изменения прессовок Cu-Al при жидкофазном спекании. - Порошковая металлургия, 1982, 5, с. 31-37), которое утилизируется с целью образования жидкой фазы эвтектического состава путем контактного плавления некоторой части исходных компонентов. Второе физическое явление, которое используется в предлагаемом решении, - зависимость знака объемных изменений порошковых тел от направления массопереноса при сплавообразовании, а именно преимущественная диффузия атомов основного компонента (алюминия) в добавку (медь) приводит к уплотнению материала.

Для выбора состава алюминиевого сплава, обеспечивающего использование тепла экзотермической реакции алюминия и меди при спекании, были приготовлены смеси порошков алюминия марки ПА-4 и меди марки ПМА, отличающиеся друг от друга содержанием меди, равным в каждой смеси последовательно (в мас.%): 30; 33; 40; 45; 50; 55, а также содержание алюминия, составляющее дополнительную до 100% часть в каждой смеси.

Из смесей прессовались образцы цилиндрической формы с размерами 1010 мм и одинаковой исходной пористости 20%, которые затем, находясь в дилатометрической трубке с безокислительной средой, помещались вместе с трубкой в печь, нагретую до 500-550oС.

При температуре среды ниже 500oС реакция образования интерметаллидов практически при любом составе идет медленно, тепло успевает рассеиваться, и температура внутри образца не достигает точки плавления эвтектики (548oС).

Нижний предел содержания меди в смеси, обеспечивающий процесс жидкофазного спекания при 550oС, составляет 15%. При меньшем содержании меди экзоэффект мал, и усадка отсутствует.

Верхний предел содержания меди в смеси составляет 70%. При этом составе основная часть алюминия вступает в реакцию с медью с образованием интерметаллидов на ее основе. Жидкой эвтектики на основе оставшейся части алюминия оказывается недостаточно, чтобы вызвать усадку порошкового тела, каркас которого теперь составляет интерметаллид Cu-Al2.

Пример получения сплава Примерно через 17 минут после помещения трубки в печь температура внутри образца начинает энергично возрастать, достигая через 1,5 минуты 548oС - температуры контактного плавления системы алюминий - медь. Эта температура, превышающая температуру среды на 48oС, сохраняется в образце в течение более 4 минут.

За время образования эвтектического расплава при 548oС образец претерпевает линейную усадку примерно на 3% за счет перегруппировки частиц алюминия и меди, находящихся в твердом состоянии. В реакцию вступают не все частицы разнородных металлов, а только те, которые имеют хороший металлический контакт вследствие разрушения окисной пленки при прессовании смеси. Однако по мере повышения температуры, до которой нагрета печь, в реакцию контактного плавления вступает все большее количество частиц меди и алюминия, так что при температуре печи выше 550oС образование значительного количества жидкой фазы приводит к потере образцом своей формы. Сплав 33% меди является эвтектическим, и выше 550oС он полностью переходит в жидкое состояние. Таким образом, 550oС является верхним пределом температурного интервала спекания предложенного сплава.

Использование температурного интервала спекания, который в основном лежит ниже точки плавления эвтектики, после исчерпания частиц компонентов, способных к контактному плавлению, позволяет автоматически прерывать процесс жидкофазного спекания, не доводя его до того момента, когда вследствие образования значительного количества расплава образец теряет свою форму.

Испытания на механические свойства показали что сплав, содержащий 30-55 мас. % меди, остальное до 100% алюминий, имеет твердость в пределах 20-60 HRA; прочность на сжатие лежит в интервале 480-42 МПа, прочность на растяжение не превышает 120 МПа. Сплав, как показано на примере состава Аl - 30 мас.% Сu, можно вполне успешно спекать и на воздухе (таблица).

Предложенный сплав не только уменьшает энергозатраты на операции спекания, удешевляя производство спеченных изделий на основе алюминия, но и повышает производительность труда за счет сокращения времени спекания: продолжительность выдержки составляет 3-5 минут, то есть в 10 раз меньше, чем при обычном спекании.

Сплав может быть использован в приборостроении для изготовления слабонагруженных и ненагруженных деталей неответственного назначения, например радиаторов охлаждения полупроводниковых приборов, подошвы электрического утюга и др. Вследствие значительного содержания электропроводной меди спеченный сплав может найти применение в качестве электроконтактного материала .

Формула изобретения

Спеченный алюминиевый сплав, содержащий медь, отличающийся тем, что он содержит компоненты в следующем соотношении, мас. %: Медь - 30-55 Алюминий - Остальное и спечен при температуре 500-550oС.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к области металлургии, в частности к высокопрочным свариваемым сплавам пониженной плотности системы алюминий - медь - литий, и может быть использовано в авиакосмической технике

Изобретение относится к металлургии, в частности к составам алюминиевых сплавов, и может быть использовано в разработке конструкционных материалов для изготовления изделий авиакосмической техники, в том числе и работающих при криогенных температурах

Изобретение относится к высокопрочным деформируемым термически упрочняемым свариваемым сплавам на основе алюминия, в частности системы Al - Cu - Li, используемым в качестве конструкционных материалов в изделиях авиакосмической техники, таких как сварные топливные баки для работы при температуре от +20°С до -253°С, различные элементы силового набора и обшивки фюзеляжа и крыла, как сжатой, так и в растянутой зоне самолетных конструкций, работающих при температуре от +175°С до -70°С

Изобретение относится к области металлургии, в частности к многокомпонентным сплавам на основе алюминия

Изобретение относится к области цветной металлургии, а именно к получению сплавов на основе алюминия, предназначенных для изготовления штамповок сложной формы, в частности штамповок дисков автомобильных колес

Изобретение относится к цветной металлургии, в частности к сплавам на основе алюминия, предназначенным для изготовления монометаллических подшипников скольжения, работающих в условиях жидкостного и граничного трения, например, объемных гидромашинах
Изобретение относится к металлургии, в частности к литейным алюминиевым сплавам и способам их термообработки

Изобретение относится к области металлургии и может быть использовано в производстве композиционных материалов (далее - КМ) и непосредственно лигатур на основе алюминия с упрочняющими частицами тугоплавких соединений (карбиды, нитриды, оксиды и т.д.)

Изобретение относится к области порошковой металлургии, в частности к технологии производства композиционных материалов из карбидных и металлических компонентов

Изобретение относится к области металлургии, конкретнее - к производству жаропрочных сплавов на никелевой основе с применением отходов

Изобретение относится к области металлургии и может быть использовано в литейном производстве, в частности в производстве магниевых и магниево-литиевых сплавов

Изобретение относится к области металлургии и может быть использовано в литейном производстве, в частности в производстве магниевых и магниево-литиевых сплавов

Изобретение относится к порошковой металлургии и может быть использовано для синтеза новой формы углерода - фуллерена, металлофуллеритов и фуллеренсодержащих композиционных материалов
Изобретение относится к композиционным материалам, а именно к металломатричным композитам
Изобретение относится к композиционным материалам, а именно к металломатричным композитам
Изобретение относится к технологии получения пористого листового материала, используемого при изготовлении изделий, работающих в условиях высоких температур, давлений и скоростей потока рабочей среды, преимущественно для изготовления лопаток газовых турбин

Изобретение относится к порошковой металлургии, в частности к изделиям из твердых сплавов, используемых при экстремальных циклических нагрузках и силах трения, создающих высокие температуры и приводящих к быстрой термомеханической усталости
Изобретение относится к черной металлургии, в частности к способам получения сплавов железа из железосодержащих отходов производства
Наверх