Способ изготовления листов из малолегированных титановых сплавов

 

Изобретение относится к области обработки металлов давлением и может быть использовано при изготовлении листов из сплавов на основе титана. Задачей изобретения является повышение качества поверхности листов за счет снижения окисления и газонасыщения их поверхности. Данный способ изготовления листов из малолегированных титановых сплавов включает нагрев плоского слитка со скоростью 3,95-4,05o/мин в (+)-области до температуры на 10-15oС ниже температуры полиморфного превращения сплава, горячую прокатку плоского слитка в несколько проходов до суммарного обжатия 65-75%, резку на заготовки, нагрев заготовок со скоростью 4,15-4,20o/мин в (+)-области до температуры на 70-80oС ниже температуры полиморфного превращения сплава с последующей прокаткой при этой температуре за несколько проходов до суммарного обжатия 80-85%, затем проводят термообработку в атмосфере чистого азота при 600-650oС, травление, правку и резку на готовый размер. Техническим результатом изобретения является повышение механических свойств листов, исключение ряда трудоемких операций по травлению и зачистке поверхности листов, повышение выхода годного, снижение стоимости полученных листов.

Изобретение относится к области обработки металлов давлением и может быть использовано при изготовлении листов из сплавов на основе титана.

Известен способ получения листов из титановых сплавов, включающий штамповку или ковку цилиндрических слитков для получения слябов, нагрев, горячую прокатку слябов на подкат в -области, обрезку концов, резку подката на заготовки, травление, нагрев и теплую прокатку в (+)-области заготовок на листы, холодную прокатку, отжиг в воздушной атмосфере, травление, правку и резку на готовый размер (кн. "Полуфабрикаты из титановых сплавов", Москва, ВИЛС, 1966, с.192).

Недостатком этого способа являются низкое качество поверхности подката, высокая трудоемкость и энергоемкость изготовления листов.

Известен способ изготовления листов из титановых сплавов, включающий нагрев, горячую прокатку на подкат в -области, резку на заготовки, нагрев заготовок в (+)-области, теплую прокатку заготовок на листы, термообработку листов в воздушной атмосфере, травление, правку, резку на готовый размер (кн. "Полуфабрикаты из титановых сплавов", Москва, ВИЛС, 1966, с.176), прототип.

Недостатком этого способа являются низкое качество поверхности листов из-за ее окисления и газонасыщения, высокая трудоемкость процесса и неэкономичность.

Предлагается способ изготовления листов из малолегированных титановых сплавов. Способ включает нагрев плоского слитка в (+)-области до температуры на 10-15oС ниже температуры полиморфного превращения сплава со скоростью 3,95-4,05o/мин, горячую прокатку плоского слитка за несколько проходов до суммарного обжатия 65-75%, резку на заготовки, нагрев заготовок в (+)-области до температуры на 70-80oС ниже температуры полиморфного превращения сплава со скоростью 4,15-4,20o/мин с последующей прокаткой при этой температуре за несколько проходов до суммарного обжатия 80-85%, после чего ведут термообработку в атмосфере чистого азота при температуре 600-650oС. Далее ведут травление, правку и резку на готовый размер.

Предлагаемый способ отличается от прототипа тем, что перед горячей прокаткой подката на нагрев подают плоский слиток и ведут его в (+)-области до температуры на 10-15oС ниже температуры полиморфного превращения сплава со скоростью 3,95-4,05o/мин, горячую прокатку на подкат проводят за несколько проходов до суммарного обжатия 65-75%, нагрев заготовок в (+)-области ведут до температуры на 70-80oС ниже температуры полиморфного превращения сплава со скоростью 4,15-4,20o/мин с последующей прокаткой за несколько проходов до суммарного обжатия 80-85%, а термообработку ведут в атмосфере чистого азота при температуре 600-650oС. Технический результат - повышение качества поверхности за счет снижения окисления и газонасыщения поверхности листов, ведущее к повышению уровня механических свойств листа и к повышению выхода годного, снижению количества технологических операций и, как следствие, снижению трудоемкости и энергоемкости процесса изготовления листов.

Предлагаемый способ позволяет снизить взаимодействие поверхности листа с агрессивными по отношению к титану газами (кислорода и водорода) из воздушной среды, исключить образование в листе оксидов и нитридов, значительно уменьшить толщину окисленного и газонасыщенного слоев, тем самым повысить механические свойства листов. Кроме того, способ позволяет исключить ряд трудоемких и энергоемких операций по травлению и зачистке поверхности листов, повышая выход годного. Все это снижает стоимость полученных листов.

Проведение процесса изготовления листов ниже предложенных режимов ведет к снижению пластических характеристик листов, повышению сопротивления деформации при прокатке и к охрупчиванию металла.

Проведение процесса выше предложенных режимов ведет к увеличению окисления и газонасыщения поверхности листов и повышению толщины окисленного и газонасыщенного слоев на поверхности листа, повышению трудоемкости в связи с необходимостью проведения дополнительной химической или абразивной очистки поверхности, а это, в свою очередь, ведет к снижению выхода годного на 5-6% за счет безвозвратных потерь металла.

Пример: Для опробования предлагаемого изобретения использовали плоский слиток из сплава ВТ1-0 размерами 1404001700 мм.

Нагрев плоского слитка проводили в газовой проходной печи до температуры 870oС, что на 10oС ниже температуры полиморфного превращения, со скоростью 4o/мин. Общее время нагрева составило 2 часа 30 минут. Температура нагрева контролировалась печной термопарой.

Прокатку плоских слитков проводили на стане "560" по схеме обжатий: 140-110-80-60-42-32-28 мм.

Подкат резали на мерные длины (заготовки) на гильотинных ножницах и зачищали по основным поверхностям на абразивных кругах. Толщина газонасыщенного слоя составляла до 0,18 мм. Размер заготовки составил 304201020 мм.

Далее заготовки нагревали в газовой кольцевой печи до температуры 810oС, что на 70oС ниже температуры полиморфного превращения, со скоростью 4o/мин.

Прокатку заготовок проводили на стане "Кварто 1500" по схеме обжатий: 28-22-17-12-7-5-4,2-4,0 мм.

Визуальный контроль поверхности прокатанных листов показал, что качество поверхности хорошее, трещины отсутствуют. Толщина газонасыщенного слоя, определяемая с использованием метода микротвердости и металлографии, составляет 0,018-0,024 мм. Такие же листы были получены известным способом. Толщина окисного и газонасыщенного слоев 0,10-0,18 мм, которые необходимо удалять с использованием дополнительных операций прогладки на прокатном стане с целью разрыхления окалины, промежуточного травления и абразивной зачистки.

Предлагаемый способ позволяет получать качественные листы с хорошей поверхностью. При этом толщина газонасыщенного слоя на листах уменьшается от 0,1 до 0,018 мм, что позволяет уменьшить безвозвратные потери в 5 раз при травлении, увеличить выход годного, улучшить экологию.

Таким образом, предлагаемый способ позволяет повысить качество поверхности листов за счет снижения толщины окисленного и газонасыщенного слоев, снизить трудоемкость на 10-15%, повысить выход годного на 5-7%.

Формула изобретения

Способ изготовления листов из малолегированных титановых сплавов, включающий нагрев плоского слитка, его горячую прокатку на подкат, резку подката на заготовки, нагрев заготовки в (+)-области, прокатку их на листы, термообработку, травление, правку, резку листов на готовый размер, отличающийся тем, что перед горячей прокаткой на подкат на нагрев подают плоские слитки и ведут его в (+)-области до температуры на 10-15oС ниже температуры полиморфного превращения сплава со скоростью 3,95-4,05o/мин, горячую прокатку на подкат проводят за несколько проходов до суммарного обжатия 65-75%, нагрев заготовок в (+)-области ведут до температуры на 70-80oС ниже температуры полиморфного превращения сплава со скоростью 4,15- 4,20o/мин с последующей прокаткой за несколько проходов до суммарного обжатия 80-85%, а термообработку ведут в атмосфере чистого азота при температуре 600-650oС.



 

Похожие патенты:
Изобретение относится к металлургии, в частности к способам изготовления стержневых деталей с головками из титановых сплавов путем изменения физической структуры сплавов, и может быть использовано в авиационно-космической технике, а также химическом машиностроении и судостроении

Изобретение относится к металлургии и может быть использовано при изготовлении полуфабрикатов обработкой давлением, например, для авиакосмической промышленности

Изобретение относится к области металлургии, в частности к технологиям для улучшения свойств субмикрокристаллических материалов, и может быть использовано в производстве конструкционных изделий в авиастроении, медицине и микроэлектронике

Изобретение относится к области металлургии, в частности к прокатному производству, и предназначено для изготовления плоского профиля, используемого в качестве конструкционного материала в активных зонах атомных реакторов, в химической и нефтегазовой промышленности

Изобретение относится к технологии лазерной обработки металлов и может быть использовано в машиностроении при упрочнении рабочих поверхностей деталей из титана и его сплавов для повышения их долговечности, стойкости к схватыванию и сопротивлению износа

Изобретение относится к металлургии и может быть использовано в производстве для изготовления изделий из титановых сплавов, в частности таких, как болты и пружины из титанового сплава ВТ 16

Изобретение относится к области термической обработки титана и его сплавов

Изобретение относится к получению прутков из псевдо--титановых сплавов для изготовления болтов

Изобретение относится к металлургии, в частности к способам получения прутков и полос из технического титана с регламентированной -структурой
Изобретение относится к деформационно-термической обработке с изменением физико-механических свойств металла и может быть использовано в машиностроении, авиадвигателестроении и медицине при изготовлении полуфабрикатов из титана

Изобретение относится к способам получения сплавов с двойной памятью формы и изготовлению устройств из этих сплавов

Изобретение относится к технологическим методам повышения конструкционной прочности металлов и сплавов, в частности к пластической деформации, термической и термомеханической обработкам, используемым в машиностроении, авиастроении и др

Изобретение относится к области металлургии, а именно к термомеханической обработке заготовок с литой крупнозернистой, крупнозернистой пластинчатой микроструктурой, в частности из титана и его сплавов, с целью получения в них заданной микроструктуры

Изобретение относится к области обработки металлов давлением, сплавов на основе алюминидов титана и может быть использовано для получения заготовок, полуфабрикатов и изделий с регламентированной структурой
Изобретение относится к области обработки металлов давлением и их термической обработке и может быть использовано для изготовления изделий из тугоплавких металлов, например в электронной промышленности для изготовления деталей электролитических конденсаторов

Изобретение относится к области машиностроения и металлургии и может быть использовано при изготовлении изделий и полуфабрикатов из титана и титановых сплавов, имеющих газонасыщенный слой, сформировавшийся при нагреве на воздухе и в инертных средах

Изобретение относится к машиностроению и может быть использовано при изготовлении листовых конструкций из титановых сплавов с применением формообразования, например холодной штамповки, и последующей термической обработки для частичного снятия нагартовки и улучшения механических характеристик изделия

Изобретение относится к трубопроводной арматуре и может быть использовано в задвижках и вентилях для перекрывания трубопроводов или регулирования расхода проходящих в них сред

Изобретение относится к области цветной металлургии, в частности к термомеханической обработке титановых сплавов, и может быть использовано в авиационной технике

Изобретение относится к машиностроению и может применяться при изготовлении вырубкой деталей электровакуумного производства, например, дисков мишеней из холоднокатаных полос молибдена
Наверх